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Example Sheet 1

Values of some physical constants are given in the supplementary notes

1. When a sample of potassium is illuminated with light of wavelength 3×10−7m, electrons are emitted
with kinetic energy 2.1 eV. When the same sample is illuminated with light of wavelength 5×10−7m
it emits electrons with kinetic energy 0.5 eV. Use Einstein’s explanation of this photoelectric effect to
obtain a value for Planck’s constant, and find the minimum energy W needed to free an electron from
the surface of potassium.

2. The light from a faint star has energy flux 10−10 Jm−2s−1. If the wavelength of the light is
5×10−7m, estimate the number of photons from this star that enter a human eye in one second.

3. Consider the Bohr model of the Hydrogen atom, taking the electron to be a non-relativistic point
particle of mass m travelling with speed v in a circular orbit of radius r around a point-like proton.
The inward acceleration v2/r must be provided by the Coulomb attraction e2/4πε0r

2, and the angular
momentum is assumed to be quantised: L = mvr = nh̄, with n = 1, 2, 3, . . . . Show that the possible
energy levels for the electron are

E = −1

2
mc2α2 1

n2

where α is the fine structure constant.

(i) Is the result for v consistent with the assumption that the motion of the electron is non-relativistic?

(ii) Suppose that the electron makes a transition from one energy level to another, emitting a photon
in the process. What is the smallest possible wavelength for the emitted photon, and how does this
compare to the Bohr radius r1 (corresponding to n = 1)?

4. A muon is a particle with the same charge as an electron, but with a mass about 207 times larger.
A muon can be captured by a proton to form an atom of muonic hydrogen. How does the radius of
the n = 1 state orbit compare to that of ordinary hydrogen?

Nuclei of atoms of hydrogen and its isotopes can fuse, releasing energy and creating hydrogen or
helium isotope nuclei. The fusion rate is very sensitive to the distance between nuclei, increasing
sharply as they get closer. What are the implications for muonic hydrogen fusion?

(If you are interested, you might wish to look into the possibilities and difficulties of so-called
muon-catalysed fusion.)

5. The time-independent Schrödinger Equation for a one-dimensional harmonic oscillator is

− h̄2

2m

d2ψ

dx2
+

1

2
Kx2ψ = Eψ

where m is the mass and the constant K gives the strength of the restoring force. Verify that there
are energy eigenfunctions of the form

ψ0(x) = C0 e
−x2/2α , ψ1(x) = C1 xe

−x2/2α

for a certain value of α, to be determined, and find the corresponding energy eigenvalues E0 and E1.
Sketch ψ0, ψ1, and V (x). (C0 and C1 are normalisation constants that you need not determine.)

6. For the harmonic oscillator in Example 5, write down the time-dependent Schrödinger Equation
satisfied by Ψ(x, t) and give the solution for each of the following initial conditions:

(i) Ψ(x, 0) = ψ0(x) , (ii) Ψ(x, 0) = ψ1(x) , (iii) Ψ(x, 0) = 1
2 (
√

3ψ0(x)− i ψ1(x) ) .

For the solution in case (iii), what is the first time T > 0 at which Ψ(x, T ) and Ψ(x, 0) correspond to
physically equivalent states?



7. A particle of mass m moves freely in one dimension (V = 0). Consider the wavefunction

Ψ(x, t) = C γ(t)−1/2 exp(−x2/2γ(t) ) ,

where γ(t) is complex-valued and C is a constant. By substituting into the time-dependent Schrödinger
equation, find a necessary and sufficient condition on γ(t) for Ψ(x, t) to be a solution. Hence determine
γ(t) if γ(0) = α, a real positive constant.

Write down and simplify an expression for the probability density for the particle at time t and find
a value for the constant C such that Ψ(x, t) is normalised. Comment briefly on the behaviour of the
probability density as t increases.

8. Consider a particle in one dimension in a potential V (x) that tends to zero rapidly as x→ ±∞.

(i) Let ψ1(x) and ψ2(x) be normalisable energy eigenfunctions of the Hamiltonian with the same
energy eigenvalue E. By considering ψ1 ψ

′
2 − ψ2 ψ

′
1, show that ψ1 and ψ2 must be proportional to

one another. What does this mean, physically?

(ii) Can the wavefunction for a normalised energy eigenstate always be chosen to be real?

(iii) Show that if ψ(x) is any normalised energy eigenstate then 〈 p̂ 〉ψ = 0 .

9. Write down the time-independent Schrödinger equation for the wavefunction of a particle moving
in a potential V = −Uδ(x), where U is a positive constant and δ(x) is the Dirac delta function.
Integrate the equation over the interval −ε < x < ε, for a positive constant ε, and hence deduce that
there is a discontinuity at x = 0 in the derivative of ψ(x):

lim
ε→0

[ψ′(ε)− ψ′(−ε) ] = −2mU

h̄2
ψ(0) .

By using this condition to relate appropriate solutions for x > 0 and x < 0, find the unique normalisable
eigenstate of the Hamiltonian, and determine its energy eigenvalue.

10. Consider a square well potential with V (x) = −U for |x| < a and V (x) = 0 otherwise (U is a
positive constant). Show that there are no bound states (normalisable energy eigenfunctions) which
satisfy ψ(−x) = −ψ(x) (i.e. which have odd parity) if a2U < (πh̄)2/8m.

11. Sketch the potential

V (x) = − h̄
2

m
sech2x .

Show that the time-independent Schrödinger equation for a particle in this potential can be written

A†Aψ = (E + 1)ψ

where E = 2mE/h̄2 and

A =
d

dx
+ tanhx , A† = − d

dx
+ tanhx .

Show, by integrating by parts, that for any normalised wavefunction ψ,∫ ∞
−∞

ψ∗A†Aψ dx =

∫ ∞
−∞

(Aψ)∗(Aψ) dx

and deduce that the eigenvalues of A†A are non-negative. Hence show that the ground state (with
lowest energy) has E ≥ −1. Show that a wavefunction ψ0(x) is an energy eigenstate with E = −1 iff

dψ0

dx
+ tanhxψ0 = 0 .

Find and sketch ψ0(x).



12. A double slit experiment with electrons is described at
http://www.hitachi.com/rd/portal/highlight/quantum/doubleslit/index.html
Explain why neither a wave model nor a particle model of the electron adequately accounts for the
results. Try to think of other simple models that might. (Warning: theorists have been trying since
1926, and every idea to date has problems. The aim of this exercise is for you to appreciate the
problems, not to solve them.)

Comments to: apak@damtp.cam.ac.uk


