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1. A particle of mass m is confined to a one-dimensional box 0 ≤ x ≤ a (the potential V (x) is
zero inside the box, and infinite outside). Show that the energy eigenvalues are En = h̄2π2n2/2ma2

for n = 1, 2, . . . , and determine corresponding normalised energy eigenstates ψn(x). Show that the
expectation value and the uncertainty for a measurement of x̂ in the state ψn are given by

〈x̂〉n =
a

2
and (∆x)2

n =
a2

12

(
1− 6

π2n2

)
.

Does the limit n→∞ agree with what you would expect for a classical particle in this potential?

2. Write down the Hamiltonian H for a harmonic oscillator of mass m and frequency ω. Express
〈H〉 in terms of 〈x̂〉, 〈p̂〉, ∆x and ∆p, all defined for some normalised state ψ. Use the Uncertainty
Relation to deduce that E ≥ 1

2 h̄ω for any energy eigenvalue E.

3. Let Ψ(x, t) be a solution of the time-dependent Schrödinger Equation with zero potential (corre-
sponding to a free particle). Show that

Φ(x, t) = Ψ(x−ut, t) eikxe−iωt

is also a solution if the constants k and ω are chosen suitably, in terms of u. Express 〈x̂〉Φ and 〈p̂〉Φ
in terms of 〈x̂〉Ψ and 〈p̂〉Ψ. Are the results consistent with Ehrenfest’s Theorem?

4. The energy levels of the harmonic oscillator are En = (n+ 1
2 )h̄ω for n = 0, 1, 2, . . . and the

corresponding stationary state wavefunctions are

ψn(x) = hn(y)e−y
2/2 where y = (mω/h̄)1/2x

and hn is a polynomial of degree n with hn(−y) = (−1)nhn(y). Using only the orthogonality relations

(ψm, ψn) = δmn ,

determine ψ2 and ψ3 up to an overall constant in each case.

Give an expression for the quantum state of the oscillator Ψ(x, t) if the initial state is Ψ(x, 0) =∑∞
n=0 cnψn(x), where cn are complex constants. Deduce that

|Ψ(x, 2pπ/ω ) |2 = |Ψ(−x, (2q+1)π/ω ) |2

for any integers p, q ≥ 0. Comment on this result, considering the particular case in which Ψ(x, 0) is
sharply peaked around position x = a.

5. Consider the Schrödinger Equation in one dimension with potential V (x). Show that for a station-
ary state, the probability current J is independent of x.

Now suppose that an energy eigenstate ψ(x) corresponds to scattering by the potential and that
V (x)→ 0 as x→ ±∞. Given the asymptotic behaviour

ψ(x) ∼ eikx +Be−ikx (x→ −∞) and ψ(x) ∼ Ceikx (x→ +∞)

show that |B|2 + |C|2 = 1. How should this be interpreted?

6. A particle is incident on a potential barrier of width a and height U . Assuming that U = 2E,
where E = h̄2k2/2m is the kinetic energy of the incident particle, find the transmission probability.
[ Work through the algebra, which simplifies in this case, rather than quoting the general result. ]



7. Consider the time-independent Schrödinger Equation with potential V (x) = −Uδ(x) . Show that
there is a scattering solution with energy eigenvalue E = h̄2k2/2m for any real k > 0 and find the
transmission and reflection amplitudes Atr(k) and Aref(k). [ Recall from Example 9 on Sheet 1 that
the wavefunction ψ is continuous, but satisfies ψ′(0+)− ψ′(0−) = −(2mU/h̄2)ψ(0) . ]

Is the solution above still an eigenfunction of the Hamiltonian if k is allowed to take complex values?
Show that Atr(k) and Aref(k) are singular at k = iκ for a certain real, positive value of κ. By first
re-scaling the scattering solution, find a bound state (normalisable) solution in the potential. What
is the energy of this bound state?

8. A particle of mass m is in a one-dimensional infinite square well (a potential box) with V = 0 for
0 < x < a and V =∞ otherwise. The normalised wavefunction for the particle at time t = 0 is

Ψ(x, 0) = Cx(a− x) .

(i) Determine the real constant C.

(ii) By expanding Ψ(x, 0) as a linear combination of energy eigenfunctions (found in Example 1 above),
obtain an expression for Ψ(x, t), the wavefunction at time t.

(iii) A measurement of the energy is made at time t > 0. Show that the probability that this yields
the result En = h̄2π2n2/2ma2 is 960/π6n6 if n is odd, and zero if n is even. Why should the result
for n even be expected? Which value of the energy is most likely, and why is its probability so close
to unity?

9. A quantum system has Hamiltonian H with normalised eigenstates ψn and corresponding energies
En (n = 1, 2, 3, . . .) . A linear operator Q is defined by its action on these states:

Qψ1 = ψ2 , Qψ2 = ψ1 , Qψn = 0 n > 2 .

Show that Q has eigenvalues ±1 (in addition to zero) and find the corresponding normalised eigenstates
χ±, in terms of energy eigenstates. Calculate 〈H〉 in each of the states χ±.

A measurement of Q is made at time zero, and the result +1 is obtained. The system is then left
undisturbed for a time t, at which instant another measurement of Q is made. What is the probability
that the result will again be +1? Show that the probability is zero if the measurement is made when
a time T = πh̄/(E2−E1) has elapsed (assume E2−E1 > 0).

10. In the previous example, suppose that an experimenter makes n successive measurements of Q at
regular time intervals T/n. If the result +1 is obtained for one measurement, show that the amplitude
for the next measurement to give +1 is

An = 1 − iT (E1+E2)

2h̄n
+ O

( 1

n2

)
.

The probability that all n measurements give the result +1 is then Pn = (|An|2)n. Show that

lim
n→∞

Pn = 1 .

Interpreting χ± as the ‘not-boiling’ and ‘boiling’ states of a two-state ‘quantum pot’, this shows that a
watched quantum pot never boils (also called the Quantum Zeno Paradox).

11. Let H be a Hamiltonian and ψ any normalised eigenstate with energy E. Show that, for any
operator A,

〈 [H,A] 〉ψ = 0 .

For a particle in one dimension, let H = T + V where T = p̂2/2m is the kinetic energy and V (x̂)
is any (real) potential. By setting A = x̂ in the result above and using the canonical commutation
relation between position and momentum, show that 〈p̂〉ψ = 0.

Now assume further that V (x̂) = kx̂n (with k and n constants). By taking A = x̂p̂, show that

〈T 〉ψ =
n

n+ 2
E and 〈V 〉ψ =

2

n+ 2
E .
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