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Quantum Mechanics Prof. Adrian Kent

Example Sheet 2

1. A particle of mass m is confined to a one-dimensional box 0 < z < a (the potential V(z) is
zero inside the box, and infinite outside). Show that the energy eigenvalues are E,, = h2m2n? /2ma?
forn =1, 2, ..., and determine corresponding normalised energy eigenstates 1, (x). Show that the
expectation value and the uncertainty for a measurement of & in the state v, are given by
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Does the limit n — oo agree with what you would expect for a classical particle in this potential?

2. Write down the Hamiltonian H for a harmonic oscillator of mass m and frequency w. Express
(H) in terms of (z), (p), Az and Ap, all defined for some normalised state ). Use the Uncertainty
Relation to deduce that £ > %hw for any energy eigenvalue F.

3. Let ¥U(z,t) be a solution of the time-dependent Schrédinger Equation with zero potential (corre-
sponding to a free particle). Show that

®(z,t) = U(z—ut,t) eFre !

is also a solution if the constants k and w are chosen suitably, in terms of u. Express (Z)¢ and (p)e
in terms of (Z)y and (p)y. Are the results consistent with Ehrenfest’s Theorem?

4. The energy levels of the harmonic oscillator are E, = (n—l—%)hw for n = 0,1,2,... and the
corresponding stationary state wavefunctions are

Ual®) = ha()e ™ /? where y = (mw/h)"/
and h,, is a polynomial of degree n with h,(—y) = (—1)"h,(y). Using only the orthogonality relations

(wmy wn) = Omn

determine 1o and 3 up to an overall constant in each case.

Give an expression for the quantum state of the oscillator W(x,t) if the initial state is ¥(z,0) =
ZZOZO cnthn (), where ¢, are complex constants. Deduce that

| ¥ (z, 2pr/w) [ = | ¥(~z, 2¢+1)m/w)[?

for any integers p, ¢ > 0. Comment on this result, considering the particular case in which ¥(z,0) is
sharply peaked around position z = a.

5. Consider the Schréodinger Equation in one dimension with potential V' (x). Show that for a station-
ary state, the probability current J is independent of x.

Now suppose that an energy eigenstate 1)(x) corresponds to scattering by the potential and that
V(z) — 0 as x — £oo. Given the asymptotic behaviour

Y(x) ~ e* + Be (2 — —o0) and Y(x) ~ Ce™™™ (2 — +00)
show that |B|? + |C|? = 1. How should this be interpreted?

6. A particle is incident on a potential barrier of width a and height U. Assuming that U = 2F,
where E = h%k? /2m is the kinetic energy of the incident particle, find the transmission probability.
[ Work through the algebra, which simplifies in this case, rather than quoting the general result. |



7. Consider the time-independent Schrédinger Equation with potential V(x) = —Ud(x). Show that
there is a scattering solution with energy eigenvalue E = h%k? /2m for any real £k > 0 and find the
transmission and reflection amplitudes A, (k) and Ayef(k). [ Recall from Example 9 on Sheet 1 that
the wavefunction v is continuous, but satisfies V' (04) — ' (0—) = —(2mU/h*) (0) . ]

Is the solution above still an eigenfunction of the Hamiltonian if & is allowed to take complex values?
Show that A, (k) and A.f(k) are singular at k = ik for a certain real, positive value of . By first
re-scaling the scattering solution, find a bound state (normalisable) solution in the potential. What
is the energy of this bound state?

8. A particle of mass m is in a one-dimensional infinite square well (a potential box) with V' = 0 for
0 < x <aand V = oo otherwise. The normalised wavefunction for the particle at time t = 0 is

U(z,0) =Cx(a—x) .
(i) Determine the real constant C'.

(ii) By expanding ¥(z,0) as a linear combination of energy eigenfunctions (found in Example 1 above),
obtain an expression for ¥(z,t), the wavefunction at time ¢.

(iii) A measurement of the energy is made at time ¢t > 0. Show that the probability that this yields
the result E, = h*r?n?/2ma?® is 960/75n5 if n is odd, and zero if n is even. Why should the result
for n even be expected? Which value of the energy is most likely, and why is its probability so close
to unity?

9. A quantum system has Hamiltonian H with normalised eigenstates 1, and corresponding energies
E, (n=1,2,3,...) . A linear operator @ is defined by its action on these states:

QU = s, Q2 =1, QY =0 n>2.

Show that @ has eigenvalues +1 (in addition to zero) and find the corresponding normalised eigenstates
X+, in terms of energy eigenstates. Calculate (H) in each of the states 4.

A measurement of () is made at time zero, and the result +1 is obtained. The system is then left
undisturbed for a time ¢, at which instant another measurement of () is made. What is the probability
that the result will again be +17 Show that the probability is zero if the measurement is made when
a time T'= wh/(E2—E,) has elapsed (assume Ey—E; > 0).

10. In the previous example, suppose that an experimenter makes n successive measurements of ) at
regular time intervals T'/n. If the result +1 is obtained for one measurement, show that the amplitude
for the next measurement to give +1 is

iT(E1+Ey) 1
aom1 - TESE) oLy,
2hn * n?
The probability that all n measurements give the result +1 is then P, = (]4,|*)". Show that
lim P,=1.
n— oo

Interpreting x+ as the ‘not-boiling’ and ‘boiling’ states of a two-state ‘quantum pot’, this shows that a
watched quantum pot never boils (also called the Quantum Zeno Paradoz).

11. Let H be a Hamiltonian and ¢ any normalised eigenstate with energy E. Show that, for any
operator A,
< [H ) A] >¢ = 0.

For a particle in one dimension, let H = T + V where T" = p*/2m is the kinetic energy and V()
is any (real) potential. By setting A = Z in the result above and using the canonical commutation
relation between position and momentum, show that (p), = 0.

Now assume further that V(z) = k2™ (with k and n constants). By taking A = Zp, show that

and (Vg =
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