* Non-examinable comment:

Does the hermitian conjugate of A always exist? Is it unique? Yes and yes. We wont give rigorous arguments (which depend on the space of functions and the classes of operators considered). But we can give informal plausibility arguments.
For example, suppose our space of wavefurdtions has a countable orthonormal basis $\{\psi:\}_{i=1}^{\infty}$ -

Then we can withe the action of a glueral linear opentor A as $A \psi_{i}=\sum \underbrace{}_{\underbrace{}_{\text {complex coetficiorls }} u_{j} \psi_{j}}$ and represent

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{n} & \ldots & a_{n n}
\end{array}\right.
$$ infinite square matrix.

Then $\left(\psi_{i}, A \psi_{j}\right)=\left(\psi_{i}, a_{j n} \psi_{k}\right)=a_{j i}$

$$
\begin{aligned}
\left(A^{+} \psi_{i}, \psi_{j}\right)=\left(a_{x i}^{*} \psi_{n}, \psi_{j}\right) & =a_{n i}\left(\psi_{n}, \psi_{j}\right) \\
& =a_{j i}
\end{aligned}
$$

i.e. $\left(\psi_{i}, A_{j}^{-}\right)=\left(A^{+} \psi_{i}, \psi_{j}\right)$
and we can now verity $\left(\phi_{1}, A \phi_{2}\right)=\left(A^{+} \phi_{1}, \phi_{2}\right)$ for general $\phi_{1}=\sum c_{1}: \psi_{i}, \phi_{2}=\sum c_{2 i} \psi_{j}$ bu anti-linearity and linearity of $($,)

To see uniqueness of A^{+}, suppose

$$
\left(A_{1} \psi_{1}, \psi_{2}\right)=\left(\psi_{1}, A \psi_{2}\right)=\left(A_{2} \psi_{1}, \psi_{2}\right)
$$

for all wavefunctions $4, \psi_{2}$ and some openters $A, \neq A_{2}$.
Then $\left(\left(A_{1}-A_{2}\right) \psi_{1}, \psi_{2}\right)=0 . \forall \psi_{1}, \psi_{2}$.
Since $A_{1}-A_{2} \neq 0$, there most be some ψ_{1} such that $\left(A_{1}-A_{2}\right) \psi_{1} \neq 0$.
Take $\psi_{2}=\left(A_{1}-A_{2}\right) \psi_{1}$.
Then $\left(\left(A_{1}-A_{2}\right) \psi_{1},\left(A_{1}-A_{2}\right) \psi_{1}\right)=\left(\psi_{2}, \psi_{2}\right)=0$ But $\psi_{2} \neq 0$. Contradiction sire $($,$) is positive detaldo.$
*End of non-examinable comment

