Now we have that \(\hat{r} = \sqrt{\sum_j \hat{x}_j^2} \). We also have that
\[
[\hat{L}_i, \sum_j \hat{x}_j^2] = 0.
\]
One can show from this that \([\hat{L}_i, \hat{r}] = 0\).

\[
[\hat{L}_i, \hat{r}] = [\hat{L}_i, \sqrt{\sum_j \hat{x}_j^2}] = 0
\]
for any function \(f \) of \(r \).
Now we have that \(\hat{r} = \sqrt{\sum_j \hat{x}_j^2} \). We also have that \([\hat{L}_i, \sum_j \hat{x}_j^2] = 0 \). One can show from this that \([\hat{L}_i, \hat{r}] = 0 \). More generally, one can show that \([\hat{L}_i, V(r)] = 0 \) for any spherically symmetric potential \(V(r) \).
Now we have that $\hat{r} = \sqrt{\sum_j \hat{x}_j^2}$. We also have that $[\hat{L}_i, \sum_j \hat{x}_j^2] = 0$. One can show from this that $[\hat{L}_i, \hat{r}] = 0$. More generally, one can show that $[\hat{L}_i, V(r)] = 0$ for any spherically symmetric potential $V(r)$. We also have that

$$[\hat{L}_i, \frac{\hat{p}_i}{2m}] = [\hat{L}_i, \frac{1}{2m} \sum_j p_j^2] =$$
Orbital Angular Momentum

Now we have that \(\hat{r} = \sqrt{\sum_j \hat{x}_j^2} \). We also have that
\[[\hat{L}_i, \sum_j \hat{x}_j^2] = 0. \] One can show from this that
\[[\hat{L}_i, \hat{r}] = 0. \] More generally, one can show that
\[[\hat{L}_i, V(r)] = 0 \] for any spherically symmetric potential \(V(r) \). We also have that

\[[\hat{L}_i, \frac{\hat{p}_i \hat{p}}{2m}] = [\hat{L}_i, \frac{1}{2m} \sum_j p_j^2] = 0. \] (7.48)
So, for any spherically symmetric potential $V(r)$, we have that

$$[\hat{L}_i, \hat{H}] = [\hat{L}_i, -\frac{\hbar^2}{2M} \nabla^2 + V(r)]$$
So, for any spherically symmetric potential $V(r)$, we have that

$$[\hat{L}_i, \hat{H}] = [\hat{L}_i, -\frac{\hbar^2}{2M} \nabla^2 + V(r)]$$

$$= 0,$$ \hspace{1cm} (7.49)
So, for any spherically symmetric potential $V(r)$, we have that

$$[\hat{L}_i, \hat{H}] = [\hat{L}_i, -\frac{\hbar^2}{2M} \nabla^2 + V(r)]$$

$$= 0,$$ \hspace{1cm} (7.49)

$$[\hat{L}^2, \hat{H}] = 0.$$ \hspace{1cm} (7.50)
Orbital Angular Momentum

So, for any spherically symmetric potential \(V(r) \), we have that

\[
[\hat{L}_i, \hat{H}] = [\hat{L}_i, -\frac{\hbar^2}{2M} \nabla^2 + V(r)] = 0 ,
\]

\[
[\hat{L}^2, \hat{H}] = 0 .
\]

(7.49)
(7.50)

In other words, \(\hat{H}, \hat{L}_i \) and \(\hat{L}^2 \) all commute with one another.

This is an important and powerful result.
So, for any spherically symmetric potential $V(r)$, we have that

$$[\hat{L}_i, \hat{H}] = [\hat{L}_i, -\frac{\hbar^2}{2M} \nabla^2 + V(r)]$$

$$= 0,$$ \hspace{1cm} (7.49)

$$[\hat{L}^2, \hat{H}] = 0.$$ \hspace{1cm} (7.50)

In other words, \hat{H}, \hat{L}_i and \hat{L}^2 all commute with one another.

This is an important and powerful result. Given any 3D quantum system, we can find a basis of simultaneous eigenfunctions of \hat{H}, \hat{L}^2 and \hat{L}_3.
We can translate the definitions of \hat{L}_i to spherical polars. We have

$$x_1 = r \sin \theta \cos \phi, \quad x_2 = r \sin \theta \sin \phi, \quad x_3 = r \cos \theta. \quad (7.51)$$
Orbital Angular Momentum

We can translate the definitions of \hat{L}_i to spherical polars. We have

$$x_1 = r \sin \theta \cos \phi, \quad x_2 = r \sin \theta \sin \phi, \quad x_3 = r \cos \theta. \quad (7.51)$$

Thus

$$\frac{\partial}{\partial \theta} = \sum_i \frac{\partial x_i}{\partial \theta} \frac{\partial}{\partial x_i}$$
We can translate the definitions of \hat{L}_i to spherical polars. We have

$$x_1 = r \sin \theta \cos \phi, \quad x_2 = r \sin \theta \sin \phi, \quad x_3 = r \cos \theta. \quad (7.51)$$

Thus

$$\frac{\partial}{\partial \theta} = \sum_i \left(\frac{\partial x_i}{\partial \theta} \frac{\partial}{\partial x_i} \right)$$

$$= r \cos \theta \cos \phi \frac{\partial}{\partial x_1} + r \cos \theta \sin \phi \frac{\partial}{\partial x_2} - r \sin \theta \frac{\partial}{\partial x_3}. \quad (7.52)$$
Orbital Angular Momentum

We can translate the definitions of \hat{L}_i to spherical polars. We have

$$x_1 = r \sin \theta \cos \phi, \quad x_2 = r \sin \theta \sin \phi, \quad x_3 = r \cos \theta.$$ \hspace{1cm} (7.51)

Thus

$$\frac{\partial}{\partial \theta} = \sum_i \frac{\partial x_i}{\partial \theta} \frac{\partial}{\partial x_i}$$

$$= r \cos \theta \cos \phi \frac{\partial}{\partial x_1} + r \cos \theta \sin \phi \frac{\partial}{\partial x_2} - r \sin \theta \frac{\partial}{\partial x_3}$$ \hspace{1cm} (7.52)

$$\frac{\partial}{\partial \phi} = \sum_i \frac{\partial x_i}{\partial \phi} \frac{\partial}{\partial x_i}$$
We can translate the definitions of \hat{L}_i to spherical polars. We have

$$x_1 = r \sin \theta \cos \phi, \quad x_2 = r \sin \theta \sin \phi, \quad x_3 = r \cos \theta. \quad (7.51)$$

Thus

$$\frac{\partial}{\partial \theta} = \sum_i \frac{\partial x_i}{\partial \theta} \frac{\partial}{\partial x_i}$$

$$= r \cos \theta \cos \phi \frac{\partial}{\partial x_1} + r \cos \theta \sin \phi \frac{\partial}{\partial x_2} - r \sin \theta \frac{\partial}{\partial x_3} \quad (7.52)$$

$$\frac{\partial}{\partial \phi} = \sum_i \frac{\partial x_i}{\partial \phi} \frac{\partial}{\partial x_i}$$

$$= -r \sin \theta \sin \phi \frac{\partial}{\partial x_1} + r \sin \theta \cos \phi \frac{\partial}{\partial x_2}. \quad (7.53)$$
We thus obtain

\[i\hbar (\cos \phi \cot \theta \frac{\partial}{\partial \phi} + \sin \phi \frac{\partial}{\partial \theta}) = -i\hbar (x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2}) \]
We thus obtain

\[
\begin{align*}
\hat{\hbar}(\cos \phi \cot \theta \frac{\partial}{\partial \phi} + \sin \phi \frac{\partial}{\partial \theta}) &= -i\hbar(x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2}) \\
&= \hat{L}_1, \\
\end{align*}
\] (7.54)
We thus obtain

\[
\begin{align*}
\hat{\mathcal{H}}(\cos \phi \cot \theta \frac{\partial}{\partial \phi} + \sin \phi \frac{\partial}{\partial \theta}) &= -i\hbar(x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2}) \\
&= \hat{L}_1, \\
\end{align*}
\]

(7.54)

\[
\begin{align*}
\hat{\mathcal{H}}(\sin \phi \cot \theta \frac{\partial}{\partial \phi} + \cos \phi \frac{\partial}{\partial \theta}) &= -i\hbar(x_3 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_3}) \\
\end{align*}
\]
We thus obtain

\[i\hbar (\cos \phi \cot \theta \frac{\partial}{\partial \phi} + \sin \phi \frac{\partial}{\partial \theta}) = -i\hbar (x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2}) \]

\[= \hat{L}_1, \quad (7.54) \]

\[i\hbar (\sin \phi \cot \theta \frac{\partial}{\partial \phi} + \cos \phi \frac{\partial}{\partial \theta}) = -i\hbar (x_3 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_3}) \]

\[= \hat{L}_2, \quad (7.55) \]
We thus obtain

\[i\hbar (\cos \phi \cot \theta \frac{\partial}{\partial \phi} + \sin \phi \frac{\partial}{\partial \theta}) = -i\hbar (x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2}) \]

\[= \hat{L}_1 , \quad (7.54) \]

\[i\hbar (\sin \phi \cot \theta \frac{\partial}{\partial \phi} + \cos \phi \frac{\partial}{\partial \theta}) = -i\hbar (x_3 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_3}) \]

\[= \hat{L}_2 , \quad (7.55) \]

\[-i\hbar \frac{\partial}{\partial \phi} = -i\hbar (x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1}) \]
We thus obtain

\[
 \begin{align*}
 i\hbar (\cos \phi \cot \theta \frac{\partial}{\partial \phi} + \sin \phi \frac{\partial}{\partial \theta}) &= -i\hbar (x_2 \frac{\partial}{\partial x_3} - x_3 \frac{\partial}{\partial x_2}) \\
 &= \hat{L}_1, \quad (7.54) \\
 i\hbar (\sin \phi \cot \theta \frac{\partial}{\partial \phi} + \cos \phi \frac{\partial}{\partial \theta}) &= -i\hbar (x_3 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_3}) \\
 &= \hat{L}_2, \quad (7.55) \\
 -i\hbar \frac{\partial}{\partial \phi} &= -i\hbar (x_1 \frac{\partial}{\partial x_2} - x_2 \frac{\partial}{\partial x_1}) \\
 &= \hat{L}_3. \quad (7.56)
 \end{align*}
\]
We can also obtain

\[\hat{L}^2 = \sum_i \hat{L}_i^2 = (\hat{L}_1 + i\hat{L}_2)(\hat{L}_1 - i\hat{L}_2) + i[\hat{L}_1, \hat{L}_2] + \hat{L}_3^2 \]
We can also obtain

\[\hat{\mathcal{L}}^2 = \sum_i \hat{\mathcal{L}}_i^2 = (\hat{\mathcal{L}}_1 + i\hat{\mathcal{L}}_2)(\hat{\mathcal{L}}_1 - i\hat{\mathcal{L}}_2) + i[\hat{\mathcal{L}}_1, \hat{\mathcal{L}}_2] + \hat{\mathcal{L}}_3^2 \]

\[= (\hat{\mathcal{L}}_1 + i\hat{\mathcal{L}}_2)(\hat{\mathcal{L}}_1 - i\hat{\mathcal{L}}_2) - \hbar \hat{\mathcal{L}}_3 + \hat{\mathcal{L}}_3^2 \]
We can also obtain

\[\hat{L}^2 = \sum_i \hat{L}_i^2 = (\hat{L}_1 + i\hat{L}_2)(\hat{L}_1 - i\hat{L}_2) + i[\hat{L}_1, \hat{L}_2] + \hat{L}_3^2 \]

\[= (\hat{L}_1 + i\hat{L}_2)(\hat{L}_1 - i\hat{L}_2) - \hbar\hat{L}_3 + \hat{L}_3^2 \]

\[= -\hbar^2 (\cot \theta e^{i\phi} \frac{\partial}{\partial \phi} - ie^{i\phi} \frac{\partial}{\partial \theta})(\cot \theta e^{-i\phi} \frac{\partial}{\partial \phi} + ie^{-i\phi} \frac{\partial}{\partial \theta}) \]
We can also obtain

\[\hat{\mathbf{L}}^2 = \sum_i \hat{L}_i^2 = (\hat{\mathbf{L}}_1 + i\hat{\mathbf{L}}_2)(\hat{\mathbf{L}}_1 - i\hat{\mathbf{L}}_2) + i[\hat{\mathbf{L}}_1, \hat{\mathbf{L}}_2] + \hat{L}_3^2 \]

\[= (\hat{\mathbf{L}}_1 + i\hat{\mathbf{L}}_2)(\hat{\mathbf{L}}_1 - i\hat{\mathbf{L}}_2) - \hbar^2 \hat{L}_3 + \hat{L}_3^2 \]

\[= -\hbar^2 (\cot \theta e^{i\phi} \frac{\partial}{\partial \phi} - ie^{i\phi} \frac{\partial}{\partial \theta}) (\cot \theta e^{-i\phi} \frac{\partial}{\partial \phi} + ie^{-i\phi} \frac{\partial}{\partial \theta}) \]

\[+ i\hbar^2 \frac{\partial}{\partial \phi} - \hbar^2 \frac{\partial^2}{\partial \phi^2} \]
We can also obtain

\[\hat{L}^2 = \sum_i \hat{L}_i^2 = (\hat{L}_1 + i\hat{L}_2)(\hat{L}_1 - i\hat{L}_2) + i[\hat{L}_1, \hat{L}_2] + \hat{L}_3^2 \]

\[= (\hat{L}_1 + i\hat{L}_2)(\hat{L}_1 - i\hat{L}_2) - \hbar \hat{L}_3 + \hat{L}_3^2 \]

\[= -\hbar^2 (\cot \theta e^{i\phi} \frac{\partial}{\partial \phi} - ie^{i\phi} \frac{\partial}{\partial \theta})(\cot \theta e^{-i\phi} \frac{\partial}{\partial \phi} + ie^{-i\phi} \frac{\partial}{\partial \theta}) \]

\[+ i\hbar^2 \frac{\partial}{\partial \phi} - \hbar^2 \frac{\partial^2}{\partial \phi^2} \]

\[= -\hbar^2 \left(\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \]
We can also obtain

\[\hat{L}^2 = \sum_i \hat{L}_i^2 = (\hat{L}_1 + i\hat{L}_2)(\hat{L}_1 - i\hat{L}_2) + i[\hat{L}_1, \hat{L}_2] + \hat{L}_3^2 \]

\[= (\hat{L}_1 + i\hat{L}_2)(\hat{L}_1 - i\hat{L}_2) - \hbar \hat{L}_3 + \hat{L}_3^2 \]

\[= -\hbar^2 (\cot \theta e^{i\phi} \frac{\partial}{\partial \phi} - ie^{i\phi} \frac{\partial}{\partial \theta})(\cot \theta e^{-i\phi} \frac{\partial}{\partial \phi} + ie^{-i\phi} \frac{\partial}{\partial \theta}) \]

\[+ i\hbar^2 \frac{\partial}{\partial \phi} - \hbar^2 \frac{\partial^2}{\partial \phi^2} \]

\[= -\hbar^2 \left(\frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \]

\[= -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right). \quad (7.57) \]
Recall that $[\hat{L}^2, \hat{L}_3] = 0$.
Recall that $[\hat{L}^2, \hat{L}_3] = 0$. We have

$$\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right),$$
Recall that $[\hat{L}^2, \hat{L}_3] = 0$. We have

\[
\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right),
\]

\[
\hat{L}_3 = -i\hbar \frac{\partial}{\partial \phi}.
\]

(7.58)
Recall that $[\hat{L}^2, \hat{L}_3] = 0$. We have

\[
\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right),
\]

\[
\hat{L}_3 = -i\hbar \frac{\partial}{\partial \phi}.
\]

We can thus seek simultaneous eigenfunctions of the form $Y(\theta) \exp(i m \phi)$,
Recall that $[\hat{L}^2, \hat{L}_3] = 0$. We have

$$\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} (\sin\theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial \phi^2} \right),$$

$$\hat{L}_3 = -i\hbar \frac{\partial}{\partial \phi}. \quad (7.58)$$

We can thus seek simultaneous eigenfunctions of the form $Y(\theta) \exp(i m \phi)$, since $\hat{L}_3 \exp(i m \phi) = \hbar m \exp(i m \phi)$.
Recall that $[\hat{L}^2, \hat{L}_3] = 0$. We have

$$\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right),$$

$$\hat{L}_3 = -i\hbar \frac{\partial}{\partial \phi}.$$ \hfill (7.58)

We can thus seek simultaneous eigenfunctions of the form $Y(\theta) \exp(i m \phi)$, since $\hat{L}_3 \exp(i m \phi) = \hbar m \exp(i m \phi)$. As ϕ is defined modulo 2π, we need $e^{i m (\phi + 2\pi)} = e^{i m \phi}$, so $e^{i 2m\pi} = 1$ and m is an integer.
This leaves us with an eigenvalue equation for \hat{L}^2:
This leaves us with an eigenvalue equation for \hat{L}^2:

\[-\hbar^2 \left(\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) - \frac{m^2}{\sin^2 \theta} \right) Y(\theta) = \lambda Y(\theta). \quad (7.59)\]
Orbital Angular Momentum

This leaves us with an eigenvalue equation for \hat{L}^2:

\[-\hbar^2 \left(\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d}{d\theta} \right) - \frac{m^2}{\sin^2 \theta} \right) Y(\theta) = \lambda Y(\theta) . \quad (7.59)\]

From a physics perspective, the key fact about this equation is that we can show it has non-singular solutions if and only if $\lambda = \hbar^2 l(l + 1)$ for some integers $l \geq 0$.

This leaves us with an eigenvalue equation for \hat{L}^2:

$$-\hbar^2 \left(\frac{1}{\sin \theta} \frac{d}{d\theta} (\sin \theta \frac{d}{d\theta}) - \frac{m^2}{\sin^2 \theta} \right) Y(\theta) = \lambda Y(\theta). \quad (7.59)$$

From a physics perspective, the key fact about this equation is that we can show it has non-singular solutions if and only if $\lambda = \hbar^2 l(l+1)$ for some integers $l \geq 0$ and for m in the range $-l \leq m \leq l$.
The solutions are called the \textit{associated Legendre functions} $P_{l,m}(\theta)$.
The solutions are called the associated Legendre functions $P_{l,m}(\theta)$. They can be obtained by reducing the equation to a standard form, using the substitution $w = \cos \theta$.
Orbital Angular Momentum

The solutions are called the *associated Legendre functions* $P_{l,m}(\theta)$. They can be obtained by reducing the equation to a standard form, using the substitution $w = \cos \theta$. Since θ is in the range $0 \leq \theta \leq \pi$, we have $-1 \leq w \leq 1$.
The solutions are called the associated Legendre functions $P_{l,m}(\theta)$. They can be obtained by reducing the equation to a standard form, using the substitution $w = \cos \theta$. Since θ is in the range $0 \leq \theta \leq \pi$, we have $-1 \leq w \leq 1$. We obtain the equation

$$-\hbar^2 \frac{d}{dw} \left((1 - w^2) \frac{dY}{dw} \right) - \left(\lambda - \frac{m^2}{1 - w^2} \right) Y = 0.$$

(7.60)
The solutions are called the associated Legendre functions $P_{l,m}(\theta)$. They can be obtained by reducing the equation to a standard form, using the substitution $w = \cos \theta$. Since θ is in the range $0 \leq \theta \leq \pi$, we have $-1 \leq w \leq 1$. We obtain the equation

$$-\hbar^2 \frac{d}{dw}((1 - w^2)\frac{dY}{dw}) - (\lambda - \frac{m^2}{1 - w^2})Y = 0. \quad (7.60)$$

For $m = 0$ and $\lambda = \hbar^2 l(l + 1)$ this is Legendre's differential equation for functions of degree l, which has solution $P_l(w)$.
The solutions are called the associated Legendre functions $P_{l,m}(\theta)$. They can be obtained by reducing the equation to a standard form, using the substitution $w = \cos \theta$. Since θ is in the range $0 \leq \theta \leq \pi$, we have $-1 \leq w \leq 1$. We obtain the equation

$$-\hbar^2 \frac{d}{dw}((1 - w^2)\frac{dY}{dw}) - (\lambda - \frac{m^2}{1 - w^2})Y = 0. \quad (7.60)$$

For $m = 0$ and $\lambda = \hbar^2 l(l + 1)$ this is Legendre's differential equation for functions of degree l, which has solution $P_l(w)$. For general m it's an associated Legendre differential equation.
Orbital Angular Momentum

The solutions are called the associated Legendre functions $P_{l,m}(\theta)$. They can be obtained by reducing the equation to a standard form, using the substitution $w = \cos \theta$. Since θ is in the range $0 \leq \theta \leq \pi$, we have $-1 \leq w \leq 1$. We obtain the equation

$$-\hbar^2 \frac{d}{dw} \left((1 - w^2) \frac{dY}{dw}\right) - \left(\lambda - \frac{m^2}{1 - w^2}\right) Y = 0.$$ \hspace{1cm} (7.60)

For $m = 0$ and $\lambda = \hbar^2 l(l + 1)$ this is Legendre's differential equation for functions of degree l, which has solution $P_l(w)$. For general m it's an associated Legendre differential equation. The associated Legendre functions can be obtained from the Legendre polynomials P_l by

$$P_{l,m}(\theta) = (\sin \theta)^{|m|} \frac{d^{|m|}}{d(\cos \theta)^{|m|}} P_l(\cos \theta).$$ \hspace{1cm} (7.61)

(up to normalisation. Note that the solutions for -m are proportional to those for m, for given l.)
We thus have the overall solution given by the spherical harmonic with total angular momentum quantum number l and \hat{L}_3 quantum number m:
We thus have the overall solution given by the spherical harmonic with total angular momentum quantum number l and \hat{L}_3 quantum number m:

$$Y_{l,m}(\theta, \phi) = P_{l,m}(\theta) \exp(i m \phi),$$
Orbital Angular Momentum

We thus have the overall solution given by the spherical harmonic with total angular momentum quantum number \(l \) and \(\hat{L}_3 \) quantum number \(m \):

\[
Y_{l,m}(\theta, \phi) = P_{l,m}(\theta) \exp(im\phi),
\]

an eigenfunction of \(\hat{L}^2 \) and \(\hat{L}_3 \) with eigenvalues \(\hbar^2 l(l + 1) \) and \(\hbar m \) respectively.
We thus have the overall solution given by the spherical harmonic with total angular momentum quantum number l and \hat{L}_3 quantum number m:

$$Y_{l,m}(\theta, \phi) = P_{l,m}(\theta) \exp(\text{i}m\phi),$$

an eigenfunction of \hat{L}^2 and \hat{L}_3 with eigenvalues $\hbar^2 l(l + 1)$ and $\hbar m$ respectively.

For plots of some spherical harmonics see e.g. mathworld.wolfram.com/SphericalHarmonic.html.
Solving the 3D Schrödinger equation for a spherically symmetric potential

The time-independent SE is

\[-\frac{\hbar^2}{2M} \nabla^2 \psi + V(r)\psi = E\psi.\] \hspace{1cm} (7.62)
Solving the 3D Schrödinger equation for a spherically symmetric potential

The time-independent SE is

\[-\frac{\hbar^2}{2M} \nabla^2 \psi + V(r)\psi = E\psi.\] (7.62)

Recall that in spherical polar coordinates

\[\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}\]
Solving the 3D Schrödinger equation for a spherically symmetric potential

The time-independent SE is

$$-\frac{\hbar^2}{2M} \nabla^2 \psi + V(r) \psi = E \psi.$$ \hfill (7.62)

Recall that in spherical polar coordinates

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

$$\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right).$$ \hfill (7.63)
Solving the 3D Schrödinger equation for a spherically symmetric potential

The time-independent SE is

$$-\frac{\hbar^2}{2M} \nabla^2 \psi + V(r) \psi = E \psi.$$ \hspace{1cm} (7.62)

Recall that in spherical polar coordinates

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r}) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

$$\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta \frac{\partial}{\partial \theta}) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right).$$ \hspace{1cm} (7.63)

So we have

$$-\hbar^2 \nabla^2 = -\hbar^2 \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \hat{L}^2.$$ \hspace{1cm} (7.64)
Solving the 3D Schrödinger equation for a spherically symmetric potential

We can thus rewrite the SE as

\[-\frac{\hbar^2}{2M} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{1}{2Mr^2} \hat{L}^2 \right) \psi(r, \theta, \phi) + V(r) \psi(r, \theta, \phi) = E \psi(r, \theta, \phi). \tag{7.65}\]
Solving the 3D Schrödinger equation for a spherically symmetric potential

We can thus rewrite the SE as

\[- \frac{\hbar^2}{2M} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{1}{2Mr^2} \hat{L}^2 \right) \psi(r, \theta, \phi) + V(r) \psi(r, \theta, \phi) = E \psi(r, \theta, \phi).\]

(7.65)

If we separate variables, writing \(\psi(r, \theta, \phi) = \psi(r) Y_{l,m}(\theta, \phi) \), this gives
Solving the 3D Schrödinger equation for a spherically symmetric potential

We can thus rewrite the SE as

\[
- \frac{\hbar^2}{2M} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{2Mr^2} \right) \hat{L}^2 \psi(r, \theta, \phi) + V(r) \psi(r, \theta, \phi) = E \psi(r, \theta, \phi).
\]

(7.65)

If we separate variables, writing \(\psi(r, \theta, \phi) = \psi(r) Y_{l,m}(\theta, \phi) \), this gives

\[
- \frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) + \left(\frac{\hbar^2}{2Mr^2} l(l + 1) \right) + V(r) \psi(r) = E \psi(r).
\]
Solving the 3D Schrödinger equation for a spherically symmetric potential

We can thus rewrite the SE as

\[- \frac{\hbar^2}{2M} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} \right) + \frac{1}{2Mr^2} \hat{L}^2 \right) \psi(r, \theta, \phi) + V(r) \psi(r, \theta, \phi) = E \psi(r, \theta, \phi) . \]

(7.65)

If we separate variables, writing \(\psi(r, \theta, \phi) = \psi(r) Y_{l,m}(\theta, \phi) \), this gives

\[- \frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) + \left(\frac{\hbar^2}{2Mr^2} l(l + 1) \right) + V(r) \right) \psi(r) = E \psi(r) . \]

(7.66)

So, we have a standard 1D radial Schrödinger equation for \(\psi(r) \), with the modified potential \(V(r) + \frac{\hbar^2 l(l+1)}{2Mr^2} \).
Solving the 3D Schrödinger equation for a spherically symmetric potential

Comment: If the angular momentum \(l = 0 \) then also \(m = 0 \), and the function \(Y_{00}(\theta, \phi) \) is constant.
Solving the 3D Schrödinger equation for a spherically symmetric potential

Comment: If the angular momentum \(l = 0 \) then also \(m = 0 \), and the function \(Y_{00}(\theta, \phi) \) is constant. Thus all zero angular momentum states are spherically symmetric.
Comment: If the angular momentum $l = 0$ then also $m = 0$, and the function $Y_{00}(\theta, \phi)$ is constant. Thus all zero angular momentum states are spherically symmetric.

Conversely, since the Y_{lm} for $l \neq 0$ are orthogonal to Y_{00}, all spherically symmetric states have zero angular momentum.
Solving the 3D Schrödinger equation for a spherically symmetric potential

Comment: If the angular momentum \(l = 0 \) then also \(m = 0 \), and the function \(Y_{00}(\theta, \phi) \) is constant. Thus all zero angular momentum states are spherically symmetric.

\[
\psi(\theta, \phi) = C
\]

Conversely, since the \(Y_{lm} \) for \(l \neq 0 \) are orthogonal to \(Y_{00} \), all spherically symmetric states have zero angular momentum.

This makes sense physically, since a state \(\psi \) with \(\langle L \rangle_\psi \neq 0 \) by definition has a nonzero vector associated with it, which breaks spherical symmetry.

\[
\langle L \rangle_\psi \neq 0
\]
The values of E for which this equation is solvable clearly may depend on l but not on m.
Degeneracies

\[- \frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) + \left(\frac{\hbar^2}{2Mr^2} l(l + 1) + V(r) \right) \psi(r) = E \psi(r).\]

(7.66)

The values of E for which this equation is solvable clearly may depend on l but not on m. As there are $(2l + 1)$ possible values of m, each energy level would have degeneracy $(2l + 1)$, assuming there are no further degeneracies.
Solving the 3D Schrödinger equation for a spherically symmetric potential

Given, 1D case: ground state of lowest energy are even parity. veilbein symmetric pot.

Theorem

The ground state (i.e. lowest energy bound state) solution of the 3D Schrödinger equation for a spherically symmetric potential must have \(l = m = 0 \) and is thus spherically symmetric.
Solving the 3D Schrödinger equation for a spherically symmetric potential

Theorem

The ground state (i.e. lowest energy bound state) solution of the 3D Schrödinger equation for a spherically symmetric potential must have \(l = m = 0 \) and is thus spherically symmetric.

Proof
The proof is by contradiction.
Solving the 3D Schrödinger equation for a spherically symmetric potential

Theorem

The ground state (i.e. lowest energy bound state) solution of the 3D Schrödinger equation for a spherically symmetric potential must have \(l = m = 0 \) and is thus spherically symmetric.

Proof The proof is by contradiction. Suppose that \(\psi(r, \theta, \phi) = \psi(r) Y_{lm}(\theta, \phi) \), for some \(l > 0 \), is the lowest energy solution and has energy \(E \).
Solving the 3D Schrödinger equation for a spherically symmetric potential

Theorem

The ground state (i.e. lowest energy bound state) solution of the 3D Schrödinger equation for a spherically symmetric potential must have \(l = m = 0 \) and is thus spherically symmetric.

Proof

The proof is by contradiction. Suppose that
\[
\psi(r, \theta, \phi) = \psi(r) Y_{lm}(\theta, \phi),
\]
for some \(l > 0 \), is the lowest energy solution and has energy \(E \). We have that

\[
-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) + \left(\frac{\hbar^2}{2Mr^2} l(l + 1) + V(r) \right) \psi(r) = E \psi(r).
\]

\[(7.67) \]
Solving the 3D Schrödinger equation for a spherically symmetric potential

Now as \hat{H}, \hat{L}^2 and \hat{L}_3 are commuting hermitian operators, the space of wavefunctions is spanned by their simultaneous eigenstates.
Solving the 3D Schrödinger equation for a spherically symmetric potential

Now as \hat{H}, \hat{L}^2 and \hat{L}_3 are commuting hermitian operators, the space of wavefunctions is spanned by their simultaneous eigenstates. In particular, the space of zero angular momentum wavefunctions is spanned by orthonormal eigenstates $\psi_i(r, \theta, \phi)$ of \hat{H} with $E = E_i$ and $l = m = 0$,
Solving the 3D Schrödinger equation for a spherically symmetric potential

Now as \hat{H}, \hat{L}^2 and \hat{L}_3 are commuting hermitian operators, the space of wavefunctions is spanned by their simultaneous eigenstates. In particular, the space of zero angular momentum wavefunctions is spanned by orthonormal eigenstates $\psi_i(r, \theta, \phi)$ of \hat{H} with $E = E_i$ and $l = m = 0$, which have the form

$$\psi_i(r, \theta, \phi) = \psi_i(r) Y_{00}(\theta, \phi) = \psi_i(r).$$
Solving the 3D Schrödinger equation for a spherically symmetric potential

Now as \hat{H}, \hat{L}^2 and \hat{L}_3 are commuting hermitian operators, the space of wavefunctions is spanned by their simultaneous eigenstates. In particular, the space of zero angular momentum wavefunctions is spanned by orthonormal eigenstates $\psi_i(r, \theta, \phi)$ of \hat{H} with $E = E_i$ and $l = m = 0$, which have the form

$$\psi_i(r, \theta, \phi) = \psi_i(r) Y_{00}(\theta, \phi) = \psi_i(r) .$$ \hspace{1cm} (7.68)

I.e., the eigenstates ψ_i are all spherically symmetric solutions.
Solving the 3D Schrödinger equation for a spherically symmetric potential

Now as \hat{H}, \hat{L}^2 and \hat{L}_3 are commuting hermitian operators, the space of wavefunctions is spanned by their simultaneous eigenstates. In particular, the space of zero angular momentum wavefunctions is spanned by orthonormal eigenstates $\psi_i(r, \theta, \phi)$ of \hat{H} with $E = E_i$ and $l = m = 0$, which have the form

$$\psi_i(r, \theta, \phi) = \psi_i(r) Y_{00}(\theta, \phi) = \psi_i(r). \quad (7.68)$$

I.e., the eigenstates ψ_i are all spherically symmetric solutions. We can thus write $\psi(r) = \sum_i c_i \psi_i(r)$ for some constants c_i such that $\sum_i |c_i|^2 = 1$.
Solving the 3D Schrödinger equation for a spherically symmetric potential

\[E = \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \right) \psi(r) \]
Solving the 3D Schrödinger equation for a spherically symmetric potential

\[E = \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) + \frac{\hbar^2}{2Mr^2} l(l + 1) + V(r) \right) \psi(r) \]

(7.69)
Solving the 3D Schrödinger equation for a spherically symmetric potential

\[
E = \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) \\
+ \left(\frac{\hbar^2}{2Mr^2} l(l + 1) + V(r) \right) \psi(r) \right) \\
= \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + V(r) \right) \psi(r) \right)
\] (7.69)
Solving the 3D Schrödinger equation for a spherically symmetric potential

\[
E = \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) \right. \\
+ \left(\frac{\hbar^2}{2Mr^2} l(l + 1) + V(r) \right) \psi(r) \bigg) \tag{7.69}
\]

\[
= \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + V(r) \right) \psi(r) \right) \\
+ \int_{r=0}^{\infty} \psi^*(r) \left(\frac{\hbar^2}{2Mr^2} l(l + 1) \psi(r) \right) \tag{7.70}
\]
Solving the 3D Schrödinger equation for a spherically symmetric potential

\[E = \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) + \left(\frac{\hbar^2}{2Mr^2} l(l + 1) + V(r) \right) \right) \psi(r) \]

\[= \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + V(r) \right) \right) \psi(r) \]

\[+ \int_{r=0}^{\infty} \psi^*(r) \left(\frac{\hbar^2}{2Mr^2} l(l + 1) \right) \psi(r) \]

\[> \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + V(r) \right) \right) \psi(r) \]

(7.69)

(7.70)

(7.71)
Solving the 3D Schrödinger equation for a spherically symmetric potential

\[
E = \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r)
+ \left(\frac{\hbar^2}{2Mr^2} l(l + 1) \right) + V(r) \right) \psi(r) \, dr
\]

\[
E = \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + V(r) \right) \right) \psi(r) \, dr
+ \int_{r=0}^{\infty} \psi^*(r) \left(\frac{\hbar^2}{2Mr^2} l(l + 1) \right) \psi(r) \, dr
\]

\[
E > \int_{r=0}^{\infty} \psi^*(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + V(r) \right) \right) \psi(r) \, dr
\]

\[
E = \int_{r=0}^{\infty} \sum_{i} c_i \psi^*_i(r) \left(-\frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + V(r) \right) \right) \sum_{j} c_j \psi_j(r).
\]
Solving the 3D Schrödinger equation for a spherically symmetric potential

Now this last term is

$$\sum_i c_i^* c_i E_i = \sum_i |c_i|^2 E_i. \quad (7.72)$$
Solving the 3D Schrödinger equation for a spherically symmetric potential

Now this last term is

\[\sum_i c_i^* c_i E_i = \sum_i |c_i|^2 E_i. \] \hfill (7.72)

Since we have that \(E > \sum_i |c_i|^2 E_i \) and that \(\sum_i |c_i|^2 = 1 \),
Solving the 3D Schrödinger equation for a spherically symmetric potential

Now this last term is

$$\sum_i c_i^* c_i E_i = \sum_i |c_i|^2 E_i.$$ \hspace{1cm} (7.72)

Since we have that $E > \sum_i |c_i|^2 E_i$ and that $\sum_i |c_i|^2 = 1$, we must have that $E > E_i$ for at least one value of i.
Solving the 3D Schrödinger equation for a spherically symmetric potential

Now this last term is

$$\sum_i c_i^* c_i E_i = \sum_i |c_i|^2 E_i .$$

(7.72)

Since we have that $E > \sum_i |c_i|^2 E_i$ and that $\sum_i |c_i|^2 = 1$, we must have that $E > E_i$ for at least one value of i. Hence E is not the lowest energy eigenvalue, in contradiction to our original assumption.
The Hydrogen atom

We can now obtain the general bound state solution for particles in the potential $V(r) = -\frac{e^2}{4\pi\varepsilon_0 r}$.
The Hydrogen atom

We can now obtain the general bound state solution for particles in the potential \(V(r) = -\frac{e^2}{4\pi\epsilon_0 r} \).

As we did in obtaining spherically symmetric solutions, we define the quantities

\[
a = \frac{e^2 M}{2\pi\epsilon_0 \hbar^2}, \quad b = \frac{\sqrt{-2MEN}}{\hbar}.
\]
The Hydrogen atom

We can now obtain the general bound state solution for particles in the potential \(V(r) = -\frac{e^2}{4\pi\varepsilon_0 r} \).

As we did in obtaining spherically symmetric solutions, we define the quantities \(a = \frac{e^2 M}{2\pi\varepsilon_0 \hbar^2} \), \(b = \frac{\sqrt{-2ME}}{\hbar} \).

We obtain from Eqn. (7.66) the equation

\[
\left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) + \left(\frac{1}{r^2} l(l + 1) \right) + \frac{a}{r} \right) \psi(r) = b^2 \psi(r). \tag{7.73}
\]

\[
- \frac{\hbar^2}{2M} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) + \left(\frac{\hbar^2}{2Mr^2} l(l + 1) + V(r) \right) \psi(r) = E \psi(r). \tag{7.66}
\]
The Hydrogen atom

We can now obtain the general bound state solution for particles in the potential \(V(r) = -\frac{e^2}{4\pi \epsilon_0 r} \).

As we did in obtaining spherically symmetric solutions, we define the quantities \(a = \frac{e^2 M}{2\pi \epsilon_0 \hbar^2} \), \(b = \frac{\sqrt{-2ME}}{\hbar} \).

We obtain from Eqn. (7.66) the equation

\[
\left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) + \left(\frac{1}{r^2} l(l + 1) \right) \psi(r) + \frac{a}{r} \psi(r) = b^2 \psi(r). \quad (7.73)
\]

As we saw in discussing Eqn. (7.26), we see that the ansatz \(\psi(r) \approx \exp(-br) \) means that the two asymptotically largest terms cancel.
The Hydrogen atom

We can now obtain the general bound state solution for particles in the potential \(V(r) = -\frac{e^2}{4\pi \varepsilon_0 r} \).

As we did in obtaining spherically symmetric solutions, we define the quantities \(a = \frac{e^2 M}{2\pi \varepsilon_0 h^2} \), \(b = \frac{\sqrt{-2ME}}{h} \).

We obtain from Eqn. (7.66) the equation

\[
\left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) \psi(r) + \left(\frac{1}{r^2} l(l + 1) \right) \psi(r) + \frac{a}{r} \psi(r) = b^2 \psi(r) .
\] (7.73)

As we saw in discussing Eqn. (7.26), we see that the ansatz \(\psi(r) \approx \exp(-br) \) means that the two asymptotically largest terms cancel. This again suggests trying an ansatz of the form \(\psi(r) = f(r) \exp(-br) \), for a power series \(f(r) \).
The new singular term \((\frac{1}{r^2} l(l + 1))\) means that the previously obtained solutions are not generally valid.
The new singular term \(\frac{1}{r^2} l(l + 1) \) means that the previously obtained solutions are not generally valid. We write the power series in the form \(f(r) = \sum_{n=0}^{\infty} a_n r^{n+\sigma} \).
The Hydrogen atom

The new singular term \(\frac{1}{r^2} l(l + 1) \) means that the previously obtained solutions are not generally valid. We write the power series in the form \(f(r) = \sum_{n=0}^{\infty} a_n r^{n+\sigma} \), where the unknown constant \(\sigma \) is defined so that \(a_0 \neq 0 \):
The new singular term \(\left(\frac{1}{r^2} l(l + 1) \right) \) means that the previously obtained solutions are not generally valid. We write the power series in the form \(f(r) = \sum_{n=0}^{\infty} a_n r^{n+\sigma} \), where the unknown constant \(\sigma \) is defined so that \(a_0 \neq 0 \): i.e. the power series begins with a term proportional to \(r^\sigma \).
The new singular term \((\frac{1}{r^2} l(l + 1))\) means that the previously obtained solutions are not generally valid.

We write the power series in the form \(f(r) = \sum_{n=0}^{\infty} a_n r^{n+\sigma}\), where the unknown constant \(\sigma\) is defined so that \(a_0 \neq 0\): i.e. the power series begins with a term proportional to \(r^\sigma\).

Considering the coefficient of \(r^{\sigma-2}\), we have
\[-(\sigma(\sigma - 1) + 2\sigma) + l(l + 1) = 0\]
The new singular term \(\frac{1}{r^2} l(l + 1) \) means that the previously obtained solutions are not generally valid. We write the power series in the form \(f(r) = \sum_{n=0}^{\infty} a_n r^{n+\sigma} \), where the unknown constant \(\sigma \) is defined so that \(a_0 \neq 0 \): i.e. the power series begins with a term proportional to \(r^\sigma \). Considering the coefficient of \(r^{\sigma-2} \), we have
\[
-(\sigma(\sigma - 1) + 2\sigma) + l(l + 1) = 0 \text{ or } \sigma(\sigma + 1) = l(l + 1),
\]
The new singular term \(\frac{1}{r^2} l(l + 1)\) means that the previously obtained solutions are not generally valid. We write the power series in the form \(f(r) = \sum_{n=0}^{\infty} a_n r^{n+\sigma}\), where the unknown constant \(\sigma\) is defined so that \(a_0 \neq 0\): i.e. the power series begins with a term proportional to \(r^{\sigma}\). Considering the coefficient of \(r^{\sigma-2}\), we have
\[-(\sigma(\sigma - 1) + 2\sigma) + l(l + 1) = 0\] or \(\sigma(\sigma + 1) = l(l + 1)\), which has solutions \(\sigma = l\) and \(\sigma = -(l + 1)\).
The new singular term \(\frac{1}{r^2} l(l + 1) \) means that the previously obtained solutions are not generally valid. We write the power series in the form \(f(r) = \sum_{n=0}^{\infty} a_n r^{n+\sigma} \), where the unknown constant \(\sigma \) is defined so that \(a_0 \neq 0 \): i.e. the power series begins with a term proportional to \(r^\sigma \). Considering the coefficient of \(r^{\sigma-2} \), we have
\[-(\sigma(\sigma - 1) + 2\sigma) + l(l + 1) = 0 \text{ or } \sigma(\sigma + 1) = l(l + 1),\] which has solutions \(\sigma = l \) and \(\sigma = -(l + 1) \). As \(l \geq 0 \), we choose \(\sigma = l \) to avoid a divergence at \(r = 0 \).
We now have
\[a_n = \frac{(n + l)2b - a}{n(n + 2l + 1)} a_{n-1} \text{ for } n \geq 1. \] (7.74)
We now have
\[a_n = \frac{(n + l)2b - a}{n(n + 2l + 1)} a_{n-1} \text{ for } n \geq 1. \]

(7.74)

As before, if the power series does not terminate this reduces to
\[a_n \approx \frac{2b}{n} a_{n-1} \text{ for large } n, \]
We now have

\[a_n = \frac{(n + l)2b - a}{n(n + 2l + 1)} a_{n-1} \text{ for } n \geq 1. \]

(7.74)

As before, if the power series does not terminate this reduces to

\[a_n \approx \frac{2b}{n} a_{n-1} \text{ for large } n, \]

which would give us \(f(r) \approx \exp(2br) \)
We now have

\[a_n = \frac{(n + l)2b - a}{n(n + 2l + 1)} a_{n-1} \text{ for } n \geq 1. \] (7.74)

As before, if the power series does not terminate this reduces to \(a_n \approx \frac{2b}{n} a_{n-1} \) for large \(n \), which would give us \(f(r) \approx \exp(2br) \) and

\[\psi(r) \approx \exp(2br) \exp(-br) \approx \exp(br), \]
We now have
\[a_n = \frac{(n + l)2b - a}{n(n + 2l + 1)} a_{n-1} \quad \text{for} \quad n \geq 1. \quad (7.74) \]

As before, if the power series does not terminate this reduces to \(a_n \approx \frac{2b}{n} a_{n-1} \) for large \(n \), which would give us \(f(r) \approx \exp(2br) \) and
\[\psi(r) \approx \exp(2br) \exp(-br) \approx \exp(br), \]
a divergent and unnormalisable wavefunction, which is physically unacceptable.
The power series must thus terminate, so we have $a = 2b(n + l)$, for some $n \geq 1$.

The power series must thus terminate, so we have \(a = 2b(n + l) \), for some \(n \geq 1 \). Thus \(b = \frac{a}{2N} \) for some \(N \geq l + 1 \),
The power series must thus terminate, so we have \(a = 2b(n + l) \), for some \(n \geq 1 \). Thus \(b = \frac{a}{2N} \) for some \(N \geq l + 1 \), giving the same overall set of solutions for \(b \), and thus the same energy levels (i.e. the Bohr energy levels), as the spherically symmetric case with \(l = 0 \) we considered earlier:

\[
b = \frac{a}{lN} \quad n = 1, 2, 3, \ldots
\]
The power series must thus terminate, so we have \(a = 2b(n + l) \), for some \(n \geq 1 \). Thus \(b = \frac{a}{2N} \) for some \(N \geq l + 1 \), giving the same overall set of solutions for \(b \), and thus the same energy levels (i.e. the Bohr energy levels), as the spherically symmetric case with \(l = 0 \) we considered earlier:

\[
E = -\frac{Me^4}{32\pi^2\epsilon_0^2\hbar^2} \frac{1}{N^2}.
\]
Energy level degeneracies

Each value of N is consistent with

$$I = 0, 1, \ldots (N - 1);$$
Energy level degeneracies

Each value of N is consistent with

$$l = 0, 1, \ldots (N - 1);$$ \hspace{1cm} (7.75)

each value of l is consistent with

$$m = -l, -(l - 1), \ldots, l.$$
Energy level degeneracies

Each value of N is consistent with

$$l = 0, 1, \ldots (N - 1); \quad (7.75)$$

each value of l is consistent with

$$m = -l, -(l - 1), \ldots, l. \quad (7.76)$$

The total number of values of (m, l) consistent with N is thus

$$
\sum_{l=0}^{N-1} \sum_{m=-l}^{l} 1
$$
Energy level degeneracies

Each value of N is consistent with

$$l = 0, 1, \ldots (N - 1); \quad (7.75)$$

each value of l is consistent with

$$m = -l, -(l - 1), \ldots, l. \quad (7.76)$$

The total number of values of (m, l) consistent with N is thus

$$\sum_{l=0}^{N-1} \sum_{m=-l}^{l} 1 = \sum_{l=0}^{N-1} (2l + 1)$$
Energy level degeneracies

Each value of N is consistent with

$$l = 0, 1, \ldots (N - 1);$$ \hspace{1cm} (7.75)

each value of l is consistent with

$$m = -l, -(l - 1), \ldots, l.$$ \hspace{1cm} (7.76)

The total number of values of (m, l) consistent with N is thus

$$\sum_{l=0}^{N-1} \sum_{m=-l}^{l} 1 = \sum_{l=0}^{N-1} (2l + 1) = 2\left(\frac{1}{2}N(N - 1)\right) + N = N^2.$$ \hspace{1cm} (7.77)
Energy level degeneracies

Each value of N is consistent with

$$I = 0, 1, \ldots (N - 1);$$

(7.75)

each value of I is consistent with

$$m = -I, -(I - 1), \ldots, I.$$

(7.76)

The total number of values of (m, I) consistent with N is thus

$$\sum_{I=0}^{N-1} \sum_{m=-I}^{I} 1 = \sum_{I=0}^{N-1} (2I + 1) = 2\left(\frac{1}{2}N(N - 1)\right) + N = N^2.$$

(7.77)

In fact, the true degeneracy of the Nth energy level of the hydrogen atom in a full non-relativistic quantum mechanical treatment is $2N^2$: the extra factor of 2 arises from an intrinsically quantum mechanical degree of freedom, the electron spin, which has no direct classical analogue.
Towards the periodic table

We could try to generalize this discussion to atoms other than hydrogen. These have a nucleus with charge $+Ze$, orbited by Z independent electrons, where the *atomic number* Z is an integer greater than one.
Towards the periodic table

We could try to generalize this discussion to atoms other than hydrogen. These have a nucleus with charge $+Ze$, orbited by Z independent electrons, where the atomic number Z is an integer greater than one.

If we take the nucleus to be fixed, as we did with hydrogen, this means we need to solve the Schrödinger equation for Z independent electrons in a central Coulomb potential.
Towards the periodic table

We could try to generalize this discussion to atoms other than hydrogen. These have a nucleus with charge $+Ze$, orbited by Z independent electrons, where the *atomic number* Z is an integer greater than one.

If we take the nucleus to be fixed, as we did with hydrogen, this means we need to solve the Schrödinger equation for Z independent electrons in a central Coulomb potential. This is not so simple, since the electrons also interact with each other.
Towards the periodic table

We could try to generalize this discussion to atoms other than hydrogen. These have a nucleus with charge $+Ze$, orbited by Z independent electrons, where the *atomic number* Z is an integer greater than one.

If we take the nucleus to be fixed, as we did with hydrogen, this means we need to solve the Schrödinger equation for Z independent electrons in a central Coulomb potential. This is not so simple, since the electrons also interact with each other.

If we ignore this temporarily, we can obtain solutions of the form

$$\psi(x_1, \ldots, x_Z) = \psi_1(x_1) \ldots \psi_Z(x_Z),$$

(7.78)

where the ψ_j are rescaled solutions for the hydrogen atom (the nucleus has charge $+Ze$ instead of $+e$).
Towards the periodic table

We could try to generalize this discussion to atoms other than hydrogen. These have a nucleus with charge \(+Ze \), orbited by \(Z \) independent electrons, where the \textit{atomic number} \(Z \) is an integer greater than one.

If we take the nucleus to be fixed, as we did with hydrogen, this means we need to solve the Schrödinger equation for \(Z \) independent electrons in a central Coulomb potential.

This is not so simple, since the electrons also interact with each other.

If we ignore this temporarily, we can obtain solutions of the form

\[
\psi(x_1, \ldots, x_Z) = \psi_1(x_1) \cdots \psi_Z(x_Z),
\]

where the \(\psi_j \) are rescaled solutions for the hydrogen atom (the nucleus has charge \(+Ze \) instead of \(+e\)). The energy is just the sum

\[
E = \sum_{i=1}^{Z} E_i.
\]
Towards the periodic table

It turns out that for relatively small atoms this gives qualitatively the right form, with corrections arising from the electron-electron interactions that can be calculated using perturbation theory.
Towards the periodic table

It turns out that for relatively small atoms this gives qualitatively the right form, with corrections arising from the electron-electron interactions that can be calculated using perturbation theory. However, we also need to allow for the *Pauli exclusion principle*, which implies that no two electrons in the same atom can be in the same state.
Towards the periodic table

It turns out that for relatively small atoms this gives qualitatively the right form, with corrections arising from the electron-electron interactions that can be calculated using perturbation theory. However, we also need to allow for the *Pauli exclusion principle*, which implies that no two electrons in the same atom can be in the same state.

So the lowest overall energy state is given by filling up the energy levels in order of increasing energy, starting with the lowest.
Towards the periodic table

Allowing for the twofold degeneracy arising from spin, as above, we have $2N^2$ states in the Nth energy level.
Towards the periodic table

Allowing for the twofold degeneracy arising from spin, as above, we have $2N^2$ states in the Nth energy level. This gives us an atom with a full energy level with $Z = 2, 10 = 8 + 2, \ldots$ for $N = 1, 2, \ldots$;
Towards the periodic table

Allowing for the twofold degeneracy arising from spin, as above, we have $2N^2$ states in the Nth energy level. This gives us an atom with a full energy level with $Z = 2, 10 = 8 + 2, \ldots$ for $N = 1, 2, \ldots$; these are the elements helium, neon, \ldots.
Towards the periodic table.

Allowing for the twofold degeneracy arising from spin, as above, we have $2N^2$ states in the Nth energy level. This gives us an atom with a full energy level with $Z = 2$, $10 = 8 + 2$, ... for $N = 1, 2, \ldots$; these are the elements helium, neon, ... The elements with outer electrons in the 1st and 2nd energy levels fill out the corresponding first two rows of the periodic table.
"good" bomb will explode if photon hits trigger

"dod" bomb will not explode — the photon just reflects.

Your problem: you have a stack of good and dod bombs, and you don't know which is which. Want to identify some good bombs.
Towards the periodic table

Allowing for the twofold degeneracy arising from spin, as above, we have $2N^2$ states in the Nth energy level. This gives us an atom with a full energy level with $Z = 2, 10 = 8 + 2, \ldots$ for $N = 1, 2, \ldots$; these are the elements helium, neon, \ldots. The elements with outer electrons in the 1st and 2nd energy levels fill out the corresponding first two rows of the periodic table. The analysis gets more complicated as atoms get larger, because electron-electron interactions become more important, and this qualitative picture is not adequate for the third and higher rows of the periodic table.