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I am very grateful to previous lecturers of this course, and in particular to
Jonathan Evans and Eugene Lim, who very generously shared their lecture notes
and thoughts on the material. These notes have been influenced by their presenta-
tions of many of the course topics, and sometimes draw directly on their discussions.
I am also grateful to past students of the course, whose feedback and corrections
have been very helpful. More feedback – whether noting typos or other errors or
more general comments – would be very welcome!

The completed lecture notes are intended to be a reasonably complete summary
of the course. However, material not covered in the printed notes will be added
during lectures, for instance in answer to questions (which are encouraged!) or
whenever there is time for further discussion that could be helpful. Non-examinable
sections of the lecture notes are marked by asterisks at the start and the end. Some
footnotes also contain references to results proved in textbooks or other references
but not in the notes: these proofs too are, obviously, non-examinable.

Further course material will be added from time to time on the course web page,
which is linked from www.qi.damtp.cam.ac.uk (follow the link to Undergraduate and
Masters Lecture Courses on the left menu).

If you wish to make additional notes during lectures you will probably find it
simplest to make them on separate sheets of paper, with footnote numbers to refer
them to the appropriate place in the printed notes.

Highlights of this course:

• Historical development of quantum mechanics

• The one-dimensional Schrödinger equation; solution for particles in various
potentials; probabilistic interpretation; beam scattering and tunneling.

• The basic formalism of quantum mechanics – states, operators, observables,
measurement, the uncertainty principle: a new way of treating familiar dy-
namical quantities (position, momentum, energy, angular momentum).

• Quantum mechanics in three dimensions: the 3D Schrödinger equation, an-
gular momentum, the hydrogen atom and other solutions of the 3D SE.

Version dated 27.08.19. Any updated versions will be placed on the course web
page linked from www.qi.damtp.cam.ac.uk.
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Recommended books

(*) R. Feynman, R. Leighton and M. Sands, Feynman lectures on physics, volume
3, chapters 1-3 (Addison-Wesley, 1989).

A beautifully written and profoundly thoughtful introduction to some of the
basic ideas of quantum theory. Feynman was one of the twentieth century’s most
creative physicists. As these chapters illustrate, he also thought very deeply and
carefully about fundamental questions in physics and about the scientific process
itself. I really recommend these chapters very strongly as background reading for
the course.

(*) A. Rae and J. Napolitano, Quantum Mechanics, chapters 1-5 (IOP Publish-
ing, 2002).

A very good textbook which covers a range of elementary and more advanced
topics in quantum theory, including a short discussion of the conceptual problems
of quantum mechanics. The first five chapters form a good course text for IB QM.

(*) S. Gasiorowicz, Quantum Physics (Wiley 2003).
A very nicely and clearly written book, with good illustrations, which covers

most of the course material well.

P. Landshoff, A. Metherell and G. Rees, Essential Quantum Physics (Cambridge
University Press, 2001).

Another nicely and concisely written textbook, which also covers most of the
course material for IB QM well.

P. A. M. Dirac, The Principles of Quantum Mechanics (Oxford University Press,
1967; reprinted 2003).

A more advanced treatment. Despite its age it is still a valuable exposition of
the insights and perspectives of one of the pioneers of quantum theory. You may
want to consider looking at this if you intend to go beyond this course and pursue
Part II and Part III courses in quantum physics.

S. Brandt and H.D. Dahmen, The Picture Book of Quantum Mechanics (4th
edition; Springer, 2012). An excellent book with accompanying plots and simu-
lations. These give visual explanations that nicely illuminate the mathematics of
solutions of the Schrödinger equation, tunnelling, reflection from barriers, atomic
electron states, and other quantum phenomena.

(*) Particularly recommended.
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1 Quantum Mechanics, science and technology

1.1 Quantum Mechanics and fundamental science

Quantum mechanics is the non-relativistic version of relativistic quantum field the-
ory. Collectively, we refer to these theories as “quantum theory”. Most physicists
would agree quantum theory is the most remarkable, interesting and surprising
physical theory we have discovered.1 Although ultimately only a non-relativistic
part of a larger theory, quantum mechanics already teaches us that our universe
follows laws that involve beautiful and intricate mathematics, and whose form we
could not possibly have imagined had they not been illuminated by experiment.

Among other things, quantum mechanics explains the essential features of the
following:

• the structure of atoms and molecules and their chemical interactions; i.e.
chemistry, and biochemistry and so, in principle, biology. We will begin to
discuss this towards the end of the course, when we consider quantum mechan-
ical descriptions of the hydrogen atom and, more qualitatively, other atoms.
This description is made more precise and taken further in Part II Principles
of Quantum Mechanics.

• the structure and properties of solids (and so, in principle, much of classical
mechanics). Conductivity (some basic theory of which is introduced in Part
II Applications of Quantum Mechanics) and superconductivity.

• the thermodynamics of light and other electromagnetic radiation and also how
electromagnetic radiation interacts with matter. To describe this properly
requires relativistic quantum field theory, which isn’t covered until Part III.

• the physics of subatomic particles, radioactivity, nuclear fission and fusion.
Again, we need relativistic quantum field theory to describe these phenomena
in full detail. But, as we’ll see later, even elementary quantum mechanics
gives us some useful insights into the physics of nuclear fission and fusion. For
example, we can understand the random nature of these processes, and the
way fusion and fission rates depend on relevant potentials, as a consequence
of quantum tunnelling.

Modern cosmological models are also based on quantum theory. Since we do not
have a quantum theory of gravity, and do not know for sure whether there is one,
these cosmological models are at best incomplete. Nonetheless they give a good
qualitative fit to observational data. Many physicists hope that this project can be
completed, so that we can describe the entire universe and its evolution by quantum
theory.2 These topics are covered in detail in the Part II and Part III Cosmology
courses.

1Einstein’s general theory of relativity is the only other contender. It is an extraordinarily
beautiful theory that transformed our understanding of space and time and their relationship to
matter, and that gave us the tools to understand the cosmos. The two theories are fundamentally
incompatible, and it is uncertain precisely which parts of which theory will survive in a future uni-
fication. Still, I find quantum theory more intriguing, because of the variety of deep mathematical
concepts it combines and because it is so different from and so much stranger than the theories
that preceded it.

2It is also true that many thoughtful physicists suspect that the project cannot be completed,
because we will need something other than a quantum theory of gravity, or because quantum
theory will turn out not to hold on large scales. If so, comparing quantum cosmological models to
observation should eventually give us insight into new physics.
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1.2 Quantum Mechanics and technology

Many of the revolutionary technological developments of the last hundred years rely
on quantum mechanics:

• semiconductor physics – transistors, diodes, integrated circuits, and hence the
computing and IT industries.

• laser physics

• nuclear power and the as yet unrealised dream of controllable fusion power

• tunnelling electron microscopy and atomic manipulation

• More recent inventions relying on the distinctive properties of quantum infor-
mation. These include quantum cryptography. Its best known application is
quantum key distribution, which in principle allows perfectly secure commu-
nication, and is now practical with large data transmission rates and over long
distances, including between satellite and ground stations. There are many
other applications, including quantum authentication, quantum position ver-
ification, quantum bit string commitment, quantum multi-party computation
and quantum digital signatures. Quantum information allows perfect security
for some of these tasks, and security advantages for others.

Another major development has been the invention of quantum algorithms
and various types of quantum computers. We now know that quantum com-
puters are substantially more efficient than classical computers for some im-
portant applications, including factorisation (at least compared to the best
known classical algorithms) and the simulation of quantum systems. Small
scale quantum computers have been built, and many research groups are com-
peting to build a quantum computer large enough to exploit the theoretical
advantages. In September 2019, Google claimed the first demonstration of
so-called “quantum supremacy”, a calculation on a quantum computer that
is infeasible on classical computers.3

Other fascinating applications include quantum teleportation – which in prin-
ciple gives a way of effectively deleting a physical system at A and recreating
it at B without sending it along a path from A to B – and other types of
quantum communication.

All of these topics are covered in the Part II Quantum Information and Com-
putation course. Notes for that course, and for Part III courses in this area,
along with some information about research work on these topics in DAMTP,
can be found on http://www.qi.damtp.cam.ac.uk.

3There are nuances of definition here, and the community is still assessing the claim.
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Figure 1: Google’s Bristlecone quantum processor. Image on left, map of qubit
connections on right.

2 Historical development of quantum mechanics

2.1 Planck’s quantum hypothesis (1900)

One of the great puzzles in late 19th century physics was the inability of clas-
sical thermodynamics and electromagnetism to predict the correct spectrum — or
indeed any sensible spectrum — for the frequency distribution of radiation from
an idealized black body. Classical thermodynamics predicted an emission spectrum
which suggested that the flux of emitted radiation tends to infinity as the frequency
tends to infinity, and hence that an infinite amount of energy is emitted per unit
time. In 1900, Max Planck showed that one could predict the experimentally ob-
served spectrum by postulating that, because of some (at that point) unknown
physics, matter can emit or absorb light of frequency ν only in discrete quanta
which have energy

E = hν = �ω . (2.1)

Here ω = 2πν is the light’s angular frequency (the number
of radians of oscillation per second), and

� =
h

2π
≈ 1.055× 10−34 Joule sec . (2.2)

The constant h is a new constant of nature (Planck’s constant). For most purposes
it turns out to be notationally more convenient to use � rather than h, and we will
generally do so.
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2.2 Einstein’s explanation of the photoelectric effect (1905)

Experiment shows that light hitting a metal surface in a vacuum can cause
electrons to be ejected with a range of energies. To emit any electrons, the incident
light needs to have angular frequency ω satisfying ω ≥ ωmin, where ωmin is a constant
depending on the particular metal. When ω ≥ ωmin, one finds that the maximum
energy of the emitted electrons, Emax, obeys

Emax = �ω − �ωmin ≡ �ω − φ , (2.3)

where φ is the so-called work function of the metal. The average rate of electron
emission is found to be proportional to the intensity of the incident light, but
individual electrons appear to be emitted at random (and so in particular, measured
over small enough time intervals, the emission rate fluctuates).

𝑒−𝑒−𝑒− 𝑒−
𝑒−

𝑒− 𝑒−

𝑒−
𝑒−

Incoming light Emitted electrons

Figure 2: Schematic illustration of the photoelectric effect.

Although light had been understood as an electromagnetic wave, it was hard to
explain these effects in terms of a wave model of light. If we think of an incident
wave transmitting energy to the electrons and knocking them out of the metal, we
would expect the rate of electron emission to be constant (i.e. we would not expect
random fluctuations), and we would also expect that light of any frequency would
eventually transmit enough energy to electrons to cause some of them to be emitted.

To explain the photoelectric effect, Albert Einstein (in 1905) was led to postulate
instead that light is quantised in small packets called photons, and that a photon of
angular frequency ω has energy �ω. He reasoned that two photons are very unlikely
to hit the same electron in a short enough time interval that their combined effect
would knock the electron out of the metal: the energy an electron acquires from
being hit by a photon is very likely to have dissipated by the time it is hit again.
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Thus, one can explain the photoelectric effect as the result of single photons hitting
electrons near the metal surface, if one assumes that an electron needs to acquire
kinetic energy ≥ φ to overcome the binding energy of the metal. An electron which
acquires energy �ω thus carries away energy ≤ �ω−φ = Emax. One can also explain
the emission rate observations: the average rate of photon arrival is proportional
to the intensity of the light, and the rate of emission of electrons is proportional
to the rate of photon arrival. However, individual photons arrive, and hit electrons
so as to knock them out of the metal, at random – hence the randomly distributed
emissions of electrons.

2.3 Diffraction of single photons (1909)

In Cambridge in 1909, J.J. Thomson suggested to G.I. Taylor (who had asked for
a research project) that he investigate the interference of light waves of very low
intensity. Taylor carried out an experiment in which a light source was successively
filtered so that the energy flux was equivalent to the flux of a source sending no
more than one photon at a time through the apparatus. He then observed the
photographic image built up by diffraction of this feeble light around a needle. The
characteristic diffraction pattern – the same pattern seen for strong light sources –
was still observed.

Figure 3: Photograph of diffraction bands caused by a thin wire in feeble light.
See: Taylor, Proc. Camb. Phil. Soc., 15, 114, 1909. The exposure was 400 hours.
Source: Cavendish Laboratory. Licensed under Creative Commons.

This seems to suggest that single photons propagate through the apparatus and
nonetheless “self-interfere” in such a way that the diffraction pattern is cumulatively
built up. This is indeed how Taylor’s results were interpreted for several decades
after the development of quantum mechanics in 1926. Problems were later noticed
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with this interpretation of this particular experiment: having the average energy flux
of a single photon does not always imply that a source is emitting single photons.
However, the experiment was subsequently repeated with genuine single photon
sources, still showing the same diffraction pattern. Qualitatively similar patterns
are seen in diffraction experiments for single electrons and other types of matter
(see below).

2.4 The Rutherford atom (1911)

After discovering the electron in 1897, J.J. Thomson proposed a model of the
atom as a sort of “plum pudding” with Z pointlike electrons of charge −e embedded
in a sphere of positive charge +Ze.

Geiger and Marsden’s famous experiment, carried out at Rutherford’s sugges-
tion, tested for large angle scattering of a beam of α-particles directed at gold foil.
One would not expect significant scattering from a loosely distributed low charge
density “plum pudding” atom, and Rutherford thought it unlikely anything interest-
ing would be observed. But, in fact, some α-particles were observed to be scattered
through angles of up to 180◦. In Rutherford’s famous phrase,

“It was as if you fired a 15-inch shell at tissue paper and it came
back and hit you.”

The scattering suggests a high density positive charge within the atom. Rutherford
thus postulated a new model of the atom, with a heavy nearly pointlike nucleus, of
charge +Ze, surrounded by Z electrons in orbit.

(A short popular account can be found at
http://physicsopenlab.org/2017/04/11/the-rutherford-geiger-marsden-experiment/
.)

2.5 The Bohr atom (1913)

Although the Rutherford atom was more compatible with the Geiger-Marsden
scattering data than was the “plum pudding” model, it had a number of theoretical
defects.

First, according to Maxwell’s electrodynamics, electrons in orbit around a nu-
cleus would radiate, since they are continually undergoing acceleration. This would
cause them to lose energy and fall in towards the nucleus. Stationary electrons
would also fall into the nucleus because of electrostatic attraction. This would
suggest that atoms must be unstable, which they generally are not.

Second, the model fails to explain why atoms have characteristic line spectra cor-
responding to discrete frequencies at which they absorb or emit light. For example,
hydrogen has frequencies given by the Rydberg formula (Rydberg, 1890):

ωmn = 2πcR0(
1

n2
− 1

m2
) for m > n , (2.4)

where the Rydberg constant

R0 ≈ 1.097× 107 m−1 . (2.5)

Third, it fails to explain why atoms belong to a finite number of chemical species,
with all members of the same species behaving identically. For instance, if a hydro-
gen atom can have an electron in any type of orbit around its nucleus, one would
expect infinitely many different types of hydrogen atom, corresponding to the in-
finitely many different possible orbits, and one would expect the atoms to have
different physical and chemical properties, depending on the details of the orbit.
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Figure 4: Schematic illustration of the Geiger-Marsden experiment, from the web
page cited above.

Niels Bohr, in 1913, observed that these problems could be resolved in a way
consistent with Planck’s and Einstein’s earlier postulates, if we suppose that the
electron orbits of hydrogen atoms are quantised so that the orbital angular momen-
tum takes one of a discrete set of values

L = n� , (2.6)

where n is a positive integer.

Thus, if we take an electron e moving with velocity v in a circular orbit of radius

r about a proton p, F = mea gives us that the Coulomb force

e2

4π�0r2
=

mev
2

r
. (2.7)

If we also have

L = mevr = n� (2.8)

then

n2�2

r3me
=

e2

4π�0r2
(2.9)

and hence

r = n2(
�24π�0
mee2

) = n2a0 , (2.10)
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Figure 5: Spectra for the hydrogen atom. The figure shows three horizontal lines
at small distances from each other. Between the two lower lines, the Lyman series,
with four vertical red bands in compact form, is shown. This has nf = 1 and ni ≥ 2,
and wavelengths in the range 91− 100 nanometers. The Balmer series is shown to
the right side of this series. This has nf = 2 and ni ≥ 3, and wavelengths in the
range 365 − 656 nanometers. At the right side of this, the Paschen series bands
are shown. This has nf = 3 and ni ≥ 4, and wavelengths in the range 820 − 1875
nanometers. The Rydberg formula is obtained by taking nf = n, ni = m.
Source for figure and caption: https://opentextbc.ca/physicstestbook2
Image licenced under Creative Commons.

where

a0 =
4π�0�2

mee2
≈ 0.53× 10−10 m (2.11)

is the Bohr radius.
We can then obtain the energy of the n-th Bohr orbit from (2.7) and the Coulomb

potential:

En =
1

2
mev

2− e2

4π�0r
= − e2

8π�0r
= − e2

8π�0n2a0
= − e4me

32π2�20�2
1

n2
=

E1

n2
,

(2.12)
where

E1 = − e4me

32π2�20�2
≈ −13.6 eV . (2.13)

Thus we have n = 1 with energy E = E1 defining the lowest possible energy
state, or ground state, of the Bohr atom. The higher energy excited states, so called
because they can be created by “exciting” the ground state atom with radiation,
correspond to n > 1. These can decay to the ground state: the ground state has no
lower energy state to decay to, and so is stable. (The Bohr model does not allow a
state with zero orbital angular momentum, which would correspond to n = 0, r = 0
and E = −∞.)
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The energy emitted for a transition from the m-th to the n-th Bohr orbital is
Emn = Em − En. Using Emn = �ωmn, where ωmn is the angular frequency of the
emitted photon, we have

ωmn = 2πR0c(
1

n2
− 1

m2
) , (2.14)

where

R0 =
mec

2�
(

e2

4π�0�c
)2 , (2.15)

which agrees well with the experimentally determined value of the Rydberg con-
stant.

Figure 6: The orbits of Bohr’s planetary model of an atom; five concentric circles
are shown. The radii of the circles increase from innermost to outermost circles.
On the circles, labels E1, E2, up to Ei are marked. Source for figure and caption:
https://opentextbc.ca/physicstestbook2
Licenced under Creative Commons.

Bohr’s model of the atom was rather more successful than its predecessors. It
predicts the energy levels of the hydrogen atom and the spectrum of photons emitted
and absorbed. It also accounted for spectroscopic data for ionised helium (He+) and
for some emission and absorption spectra for other atoms. (We now understand that
these are the spectra produced by the innermost electrons, which can be modelled
in a way qualitatively similar to the electron in the hydrogen atom.)

However, as Bohr himself stressed, the model offered no explanation of atomic
physics. For example, as Rutherford commented, it’s quite mysterious that an
electron which jumps from them-th to the n-th orbit seems to know in advance what
frequency to radiate at during the transition. Moreover, the Bohr model is quite
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wrong about the details of electron orbits, even for the hydrogen atom. Nonetheless,
it was an important stepping stone on the path to quantum mechanics, suggesting
some link between Planck’s constant, atomic spectra and atomic structure, and the
quantisation of angular momentum and other dynamical quantities.

2.6 Compton scattering (1923)

In 1923, Arthur Holly Compton observed the scattering of X-rays by electrons
associated with atoms in a crystal. Because the X-ray energies were much larger
than the electron binding energies, the electrons can effectively be modelled by
free electrons. Indeed, we also directly observe that if an electron beam and an
X-ray beam converge, some electrons and some X-rays are deflected. This is very
difficult to reconcile with a pure wave model of electromagnetic radiation, because
the energy and momentum transfer for individual scatterings does not depend on
the intensity of the X-ray beam.

A simple alternative explanation is that the scattering results from collisions
between a single photon in one beam and a single electron in the other, in which
energy and momentum are transferred between the photon and the electron. (A
relativistic treatment of this scattering process was given in the IA Dynamics and
Relativity course.) This explanation is consistent with the observed scattering data
and with conservation of (relativistic) energy and momentum, provided we assume
that a photon of angular frequency ω has a definite momentum

p = �k , (2.16)

where k is the wave vector of the corresponding electromagnetic wave, so that

|p| = �ω
c

= �|k| . (2.17)
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2.7 Wave and particle models of electromagnetic radiation

We thus see the emergence of two different models of light and other electro-
magnetic radiation.

Sometimes (classical electromagnetism, diffraction experiments with a strong
light source, . . .) it is useful to model light in terms of waves:

ei(k.x−ωt) , (2.18)

where k is the wave vector, ω the angular frequency, c = ω
|k| the speed of light in a

vacuum, and the wavelength λ = 2πc
ω = 2π

|k| .

Sometimes (photoelectric effect, spectroscopy in the Bohr model of the hydrogen
atom, Compton scattering, . . .) it is useful to adopt a particle model, in which light
is made up of photons with energy and momentum

E = �ω , p = �k . (2.19)

The word “model” is chosen deliberately here. A model can be useful (as the
wave and particle models of light are, in the appropriate contexts) without be-
ing completely correct. Indeed, G.I. Taylor’s 1909 demonstration of single photon
diffraction already gave an example of a single experiment for which neither the
wave nor the particle model of light appeared to be adequate. A simple particle
model would not predict the observed diffraction pattern, while a simple wave model
cannot explain the observation of single photons recorded on the photographic film.4

2.8 De Broglie waves (1924)

Louis de Broglie reexamined and extended Einstein’s photon hypothesis. If,
he argued, Einstein was right that light waves can be considered as composed of
particles – photons – might it not equally be the case that objects like electrons,
which were thought of as particles, could exhibit wave-like behaviour?

As he pointed out in his 1924 PhD thesis, this would make the Bohr angular
momentum quantization condition

L = pr = n� (2.20)

at least somewhat less mysterious. If we suppose that an electron of momentum p
can (somehow) be thought of as a wave with de Broglie wavelength

λ =
2π�
p

, (2.21)

then the electron in the n-th Bohr orbit would be in a standing wave pattern with
n wavelengths:

2πr =
2πn�
p

= nλ . (2.22)

De Broglie hypothesised that the frequency and wavevectors of the relevant wave
were related to the energy and momentum of the particle as for photons: that is, we
have E = �ω, p = �k even for particles with nonzero mass. (In fact, he speculated –
incorrectly, according to our current understanding – that photons might also have
a small nonzero mass.)

Einstein wrote, on learning of de Broglie’s hypothesis, that

4See earlier comment: to justify this fully we need to consider versions of the experiment with
a guaranteed single photon source.
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De Broglie’s model of the atom.   Electrons occupy orbits 
corresponding to a integer multiple of their de Broglie wavelength. 

Figure 7: Schematic illustration of the de Broglie model of electron orbits in an
atom.

“I believe it is the first feeble ray of light on this worst of our physics
enigmas.”

It was.

2.9 Matter wave diffraction (1923-7)

We know that the wave model of light predicts, correctly, that light should form
interference and diffraction patterns. De Broglie’s hypothesis suggests the same
should be true of electrons and other massive particles. This was first confirmed in
experiments carried out (from 1923-7) by Davisson and Germer and (independently
in 1927) by G.P. Thomson, who observed diffractive scattering of electrons from
metallic crystals, with diffraction patterns consistent with the de Broglie wavelength
λ = 2π�

p .
G.P. Thomson was the son of J.J. Thomson, who in 1897 discovered the electron,

in experiments in which it behaves as (and so was then understood to be) a particle.
It is a pleasing historical quirk that G.P. Thomson was the co-discoverer of the
wave-like behaviour of electrons in diffraction experiments.

Many diffraction experiments with electrons, neutrons and other particles have
since been carried out, all confirming de Broglie’s prediction.

2.10 Discussion of the double slit experiment

(Cf Feynman volume III chapters I-III)
A nice version of the double slit experiment with electrons was carried out by

Akira Tonomura. It is described at
http://www.hitachi.com/rd/portal/highlight/quantum/doubleslit/index.html

Like the other diffraction experiments mentioned above, this shows that electrons
and other massive particles can produce interference patterns in the same sort of
way as light and water waves. At the same time, it gives very vivid evidence of
electrons being detected as individual particles. We stress again that both the wave
description and the particle description are just models that are sometimes useful
but, as this experiment again illustrates, not fundamentally correct. To analyse this
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Figure 8: Single electron detection events building up an interference pattern in
Tonomura’s experiment. Copyright in these documents published on Hitachi World-
Wide Web Server is owned by Hitachi, Ltd.

conclusion in more detail, let’s follow Feynman in considering an idealised version
of the double slit experiment, in which we assume we have perfect detectors that
can register the passage of an electron without affecting it.

The observed interference pattern in a double slit experiment agrees with that
predicted by a wave model (and disagrees with that predicted by a particle model).
But the electrons arrive individually at the detector, which registers each time one
arrives — as a particle model (but not a wave model) would suggest. The same is
true of other massive particles, and also of photons. Even if we reduce the intensity
of the source so that only one electron on average is between the source and the
screen at any given time, we still see individual electrons detected in a pattern that
cumulatively reproduces the distribution predicted by the wave model.

It’s tempting to think that, when electrons leave the source, they behave like
bullets from a gun – i.e. like particles coming from a well-defined small region.
Certainly if we place a detector near the source this is what the detections suggest
(although if we do this the electrons don’t continue into the rest of the apparatus).
It’s also tempting to think that, since the electrons (etc.) arrive at the detector and
are detected there as particles, with a definite or nearly definite position, they must
have behaved like classical particles throughout, following some definite path from
the source, through one hole or the other, to the detector. But, tempting though
this last intuition may be, it’s hard to reconcile with the observed interference
pattern. If the electrons behaved like bullets throughout, we’d expect something
like a superposition of two Gaussian distributions from the two slits, instead of the
pattern of minima and maxima we observe.
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Quantum weirdness: the double slit experiment

The observed patterns for one and two slits fit
very well with a wave model of light, and seem to 
refute a model in which light is made up of particles.

Figure 9: The double slit experiment.

There seems, in any case, a simple way to investigate more closely. Suppose
that we have ideal detectors, which register that an electron has passed through a
region, but don’t obstruct its path. We can set up a double slit experiment with
one of these ideal detectors adjacent to each slit (for definiteness, let us say they are
on the far side, between the slit and the screen). Now we don’t need to speculate:
we can observe which slit the electron goes through. But when we do this, the
interference pattern changes: we see a superposition of two Gaussians, as predicted
by a particle model, rather than the pattern of maxima and minima predicted by
the wave model and observed in the previous experiment.

18



What is really going on in the double slit 
experiment? 

Light 
source

Screen
Absorbing filter
with two slits

Why not just look and see which slit the photon goes through?

What if we include passive 
detectors registering which 
slit the photon goes through?

By introducing new detectors, we changed
the experiment.

Quantum theory predicts, and experiment
confirms, that this changes the outcome.

Figure 10: Observing which slit the electron goes through in the double slit exper-
iment.

2.10.1 What can we conclude from double slit experiments?

1. As we already stressed, the wave model and the particle model are just that —
models. Neither of them is adequate to explain the behaviour of electrons, photons,
or other objects. Each of them can sometimes give a partial explanation of our
observations, but that explanation is not consistent with all the data.

2. In particular, the type of reasoning about electron paths that would apply
within a particle model does not generally apply in Nature. We can’t assume that
the electron follows a definite path through one slit or the other, and we can’t
assume (as we could with a classical particle) that observing which slit it goes
through makes no difference to the interference pattern.

3. Some textbooks summarize the state of affairs described in point 1 by saying
that electrons (photons, etc.) exhibit something called “wave-particle duality”.
This term can mislead, if it is interpreted as a sort of explanation of what is going
on rather than just a catchy name for it.

The fact is that our classical wave and particle models are fundamentally inad-
equate descriptions. It isn’t correct to say that an electron (or photon, etc.) is both
a wave and a particle in the classical senses of either of those words. The electron
is something different again, though it has some features in common with both. To
go further, we need a new physical model: quantum mechanics.

4. We saw that the electron interference pattern builds up over time, yet the
points at which individual electrons hit the screen do not appear to be precisely
predictable: they seem to arrive at random. It might seem natural to speculate
that this apparent randomness might be explained by the fact that we don’t have
complete data about the experiment. Perhaps, for example, the electrons leave the
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source in slightly different directions, or perhaps they have some sort of internal
structure that we haven’t yet discussed (and perhaps hasn’t yet been discovered),
and perhaps this determines precisely where they hit the screen.

As we’ll see, according to quantum mechanics this is not the case. Quantum
mechanics, unlike classical mechanics, is an intrinsically probabilistic theory, and it
tells us that there is simply no way to predict precisely where the electron will hit
the screen, even if we have a precise and complete description of its physical state
when it leaves the source.

Now, of course, quantum mechanics might not be the final theory of nature.
It’s possible that some as yet unknown and more complete theory could underlie
quantum mechanics, and it’s logically possible that this theory (if there is one)
could be deterministic. However, there are very strong reasons to doubt that any
theory underlying quantum mechanics can be deterministic. In particular, it can be
proved (given a few very natural assumptions) that any such theory would be incon-
sistent with special relativity. This follows from Bell’s theorem and experimental
tests thereof: it is discussed further in the Part II course “Principles of Quantum
Mechanics” and in Part III courses.)
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2.11 *Ongoing tests of quantum theory

Although later developments are beyond the scope of this course, it would be
wrong to leave the impression that the historical development of quantum mechan-
ics ended in the first part of last century. Indeed, the basic principles of quantum
mechanics are still being questioned and tested by some theorists and experimen-
talists today. Quantum theory is very well confirmed as a theory of microscopic
physics. However, the case for believing that it applies universally to physics on all
scales is much weaker.

There is a good scientific motivation for testing any scientific theory in new
domains, which is that theories developed to explain phenomena in one domain may
not necessarily apply in other domains. For example, quantum theory itself shows
us the limits of validity of Newtonian mechanics and of classical electrodynamics.
Similarly, Einstein’s general theory of relativity shows us the limits of validity of
Newton’s theory of gravity.

There is also a specific motivation for wanting to test quantum theory for macro-
scopic systems. This is that the problems in making sense of quantum theory as
an explanation of natural phenomena seem to stem from the fact that the classical
physics we see on macroscopic scales appears to emerge from quantum theory in a
way that, despite many attempts, remains hard to pin down. Many theorists be-
lieve it remains fundamentally unexplained. Many others believe it is explained or
explainable, but there is no real consensus among them about the right explanation.

Interestingly, we know there are consistent (non-relativistic) theories that agree
very precisely with quantum mechanical predictions for microscopic (small mass)
particles, but disagree for macroscopic (large mass) ones.

In the past few years, experimental technology has advanced far enough to
demonstrate diffraction of quite complex molecules. (Some descriptions of these
experiments can be found at
https://vcq.quantum.at/; see in particular the work of the Arndt and Aspelmayer
research groups.) Attempts continue to demonstrate interferometry for larger and
larger objects, motivated not only by the technological challenge but also by the
possibility of testing the validity of quantum mechanics in new domains. In Octo-
ber 2019, Fein et al. reported interference experiments for molecules of weight
larger than 25kDa (See https://www.nature.com/articles/s41567-019-0663-9 and
the rather amusing Q and A summary
https://www.quantumnano.at/detailview-news/news/facts-fiction-in-reports-on-high-
mass-interference/ ).

It should be stressed that there is to date (October 2019) no experimental evi-
dence for any deviation from quantum mechanics, which has been confirmed in an
impressive array of experiments investigating many different physical regimes. *

2.12 Closing comments

1. As we’ve seen, the photon hypothesis played a key role in the development of
quantum mechanics. We’ve also seen that photons (which are massless) and massive
particles (such as electrons) produce qualitatively similar interference and diffraction
patterns. However, we won’t have much more to say about photons in this course. It
turns out that we can develop quantum mechanics for the electron and other massive
particles using relatively simple equations. We can build up a good intuition about
how quantum systems behave in experiments and in nature from these equations. A
fully satisfactory quantum treatment of photons or other massless particles requires
a relativistic quantum theory of fields, which requires more sophisticated concepts
(and is much harder to make mathematically rigorous). Quantum electrodynamics,
which is a relativistic quantum field theory incorporating photons, is discussed in
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Figure 11: Interference of molecules larger than 25KDa, from the Fein et al. paper
cited above.

Part III theoretical physics courses, along with other relevant quantum field theories.
2. Although we’ve already seen the classical particle model is inadequate, we

still need some collective name for electrons, protons, neutrons and so on. Perhaps
physicists should have invented another term, but we still call these “particles”. We
will follow this tradition, so that we might say that the electron is an elementary
particle, talk about quantum mechanics applied to an abstract particle of mass m,
and so forth — always keeping in mind that the classical particle model does not
actually apply.
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3 The one-dimensional Schrödinger equation

3.1 The 1D Schrödinger equation for a free particle

We are first going to develop quantum mechanics in one space (and one time)
dimension. We can solve the equations for simple physical models more easily in
1D than in 3D and, happily, it turns out that 1D solutions give a good qualitative
feel for a range of interesting 3D physical phenomena.

In 1924, Schrödinger developed de Broglie’s ideas further, into what became a
standard way of framing the laws of quantum mechanics.5

Recall that de Broglie postulated that matter is described by waves, and that
the energy and momentum are related to the angular frequency and wave vector by
E = �ω and p = �k, or in one dimension p = �k. We can express this by associating
to a particle of energy E and momentum p a wave of the form

ψ(x, t) = exp(i(kx− ωt)) . (3.1)

Now, for a mass m particle, we have E = 1
2mv2 = p2

2m , and so

ψ(x, t) = exp(i(kx− ωt)) = exp(
i

�
(px− p2

2m
t)) . (3.2)

Notice that we have taken ψ(x, t) to be complex. Using complex numbers to
represent waves is familiar in classical electromagnetism, where it allows us to com-
bine the electric and magnetic fields in a single equation. In that context, it’s
mathematically convenient, but the real and imaginary parts each have a simple
physical interpretation. We will see that complex-valued solutions to (generalised)
wave equations play a more essential role in quantum mechanics.

The simplest wave equation to which the de Broglie wave is the general solution
is the time-dependent 1D Schrödinger equation for a free particle:

1

2m
(−i�

∂

∂x
)2ψ(x, t) = i�

∂

∂t
ψ(x, t) . (3.3)

(By a free particle we mean a particle not subject to external forces, i.e. one moving
in a potential V (x) = 0.)

5There is an equivalent alternative way of describing quantum mechanics, developed by Heisen-
berg, Born and Jordan. But Schrödinger’s formulation is easier to work with and gives a more
intuitive physical picture – so we will follow his approach. Note that “more intuitive” here is a
relative statement. As we will see, many of the predictions of quantum mechanics are counter-
intuitive. Also, some of the intuitions Schrödinger’s picture suggests may be helpful to us in some
contexts but are not fundamentally justifiable.
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3.2 The momentum operator

We define the momentum operator

p̂ = −i�
∂

∂x
. (3.4)

So, for the de Broglie wave ψ(x, t) = exp( i
� (px−

p2

2m t)), we have p̂ψ = pψ. In other
words, acting with the momentum operator on the de Broglie wave is equivalent to
multiplying by the wave momentum.6 We can rewrite (3.3) as

1

2m
p̂2ψ = i�

∂ψ

∂t
. (3.5)

This is our first example of a general feature of quantum mechanics. Physically
significant quantities (in this case momentum) are represented by operators. These
operators act on functions that represent physical states (in this case the idealized
state defining the de Broglie wave).

Formally, we define an operator Ô to be a linear map from a space of functions7

to itself, i.e. any map such that

Ô(a1ψ1 + a2ψ2) = a1Ôψ1 + a2Ôψ2 (3.6)

for all complex numbers a1, a2 and all functions ψ1,ψ2 in the relevant space.

6This tells us that the de Broglie wave is an eigenfunction of the momentum operator with
eigenvalue p: we will define these terms more generally later.

7We will not be too precise about which space of functions we are working with, but will
assume that they are suitably “well behaved”. For example, and depending on the context, we
might want to consider the space of infinitely differentiable functions, C∞(R), or the space of
“square integrable” functions, i.e. those satisfying Eqn. (3.11).
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3.3 The 1D Schrödinger equation for a particle in a potential

We want to consider particles subject to a potential V (x) as well as free particles.
Examples: alpha rays scattering from a nucleus, electrons diffracting from a

crystal, buckyballs going through an interferometer, neutrons or larger massive
particles moving in a gravitational field.

To do this, we replace the kinetic energy term in (3.5) by an operator corre-
sponding to the hamiltonian or total energy:

H =
p2

2m
+ V (x) , (3.7)

namely

Ĥ =
p̂2

2m
+ V (x) , (3.8)

where the second operator corresponds to multiplication by V (x).

This gives the general form of the time-dependent 1D Schrödinger equation for
a single particle:

Ĥψ(x, t) = i�
∂ψ

∂t
. (3.9)

Or, more explicitly:

− �2

2m

∂2ψ

∂x2
+ V (x)ψ = i�

∂ψ

∂t
. (3.10)

Note that there is no way to prove mathematically that Eqns. (3.9, 3.10) are
physically relevant, although we have given some motivation for them in the light
of previous physical models and experimental results. As with any new physical
theory, the only real test is experiment. Since it is not yet obvious what the complex-
valued solutions to (3.9, 3.10) have to do with experimentally observable quantities,
we will first need to give rules for interpreting them physically, and then test these
predictions.
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3.4 The wavefunction

We call a complex valued function ψ(x, t) that is a solution to (3.9) or (3.10) a
wavefunction. We say the wavefunction ψ(x, t) is normalisable (at time t) if

0 <

� ∞

−∞
|ψ(x, t)|2dx < ∞ . (3.11)

Note that for any complex valued ψ(x, t) the integral is real and non-negative.

We say ψ(x, t) is normalised if

� ∞

−∞
|ψ(x, t)|2dx = 1 . (3.12)

So, given a normalisable ψ(x, t) with
�∞
−∞ |ψ(x, t)|2dx = C, so that 0 < C < ∞,

we can define a normalised wavefunction C−1/2ψ(x, t).

3.4.1 What is the wavefunction?

As we will explain in following lectures, the wavefunction ψ(x, t) of a particle is
a mathematical object that allows us to calculate the probability of detecting the
particle at any given position if we set up a detector there. More generally, it
allows us to calculate the probability of any given outcome for the measurement of
any observable quantity (for example, energy or momentum) associated with the
particle.

Sometimes in the course of your studies you may suspect that lecturers are
temporarily keeping the full truth from you.8 Sometimes you would be right, but
not here. We really don’t have a better and more intuitively comprehensible story
about the wavefunction.9

8If charitable, you may also suspect there may be good pedagogical reasons for this.
9At least, not one that is generally agreed.
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3.4.2 What the wavefunction definitely isn’t

Schrödinger initially hoped to interpret the wave function as describing a dispersed
cloud of physical material that somehow corresponds to a “smeared-out” particle.
This looks a natural interpretation at first sight, but proved untenable and was
abandoned.

One problem with this interpretation is that if a charged particle is really a
dispersed cloud of charge, we would expect to be able to detect bits of the cloud
carrying fractions of the charge of the electron. However, we always find that
charged objects carry a charge that is some integer multiple of the electron charge.
Classical electrodynamics also suggests that a dispersed charge of cloud should in-
teract repulsively with itself via the Coulomb force, and thus tend to be additionally
dispersed, in a way that we do not observe.

Even if these objections could somehow be overcome, another problem remains.
No matter how widely the electron’s wavefunction is spread out in space, when we
look for it by setting up detectors we always find an apparently pointlike particle
in a definite location. If the wavefunction really represented a dispersed cloud, this
cloud would have to suddenly coalesce into a particle at a single point when we
carry out a measurement. This would mean that parts of the cloud would have to
travel extremely fast — often much faster than light speed. This is inconsistent
with special relativity.

3.5 The superposition principle

Exercises 1. The Schrödinger equation

− �2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t) = i�

∂

∂t
ψ(x, t)

is linear in ψ(x, t): if ψ1 and ψ2 are solutions then a1ψ1+a2ψ2 is a solution too,
for any complex a1, a2.

2. If ψ1 and ψ2 are normalisable and a1ψ1 + a2ψ2 is nonzero 10, then it is also
normalisable.

3. Show that it is not generally true that if ψ1 and ψ2 are normalised then
a1ψ1 + a2ψ2 is, even if |a1|2 + |a2|2 = 1.

The linearity of the Schrödinger equation implies the so-called superposition
principle: there is a physical solution corresponding to any linear combination of
two (or more) physical solutions.

The superposition principle is an essential feature of quantum mechanics, which
does not generally apply in classical physics. It makes no sense in Newtonian
mechanics to add a linear combination of two orbits of a planet around the Sun:
this doesn’t define another possible orbit. But in quantum theory, taking sums of
physical wavefunctions, for example those of an electron orbiting the nucleus of a
hydrogen atom, gives us another wavefunction that has a direct physical meaning.

We will see shortly that we need to normalise a wavefunction to obtain a sensible
probability distribution from it and make physical predictions. So to make physical
predictions from a superposition, we generally need to normalise the sum ψ =
a1ψ1 + a2ψ2. As we’ve just seen, this is always possible if ψ1,ψ2 are normalisable
and ψ is nonzero.

10I.e. not the zero function; it does not vanish everywhere.
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3.6 Probabilistic interpretation of the wavefunction: the Born
rule

Max Born in 1926 explained the essential connection between the wavefunction and
experiment, via the so-called Born rule:

If we carry out an experiment to detect the position of a particle described
by a normalised wavefunction ψ(x, t), the probability of finding the particle in the
interval [x, x+ dx] at time t is

� x+dx

x

|ψ(y, t)|2dy ≈ dx|ψ(x, t)|2

= dxρ(x, t) , (3.13)

where we write ρ(x, t) = |ψ(x, t)|2 (see below).
More generally, the probability of finding the particle in any interval [a, b] is

� b

a

|ψ(y, t)|2dy . (3.14)

Intuitively, it may seem that (3.14) should follow from (3.13). Certainly, it would
be peculiar if the probability of finding a particle in a given interval depended on
how the interval was sub-divided (i.e. on how precise our position measurements
were). But we have already seen some apparently peculiar predictions of quantum
mechanics, which show it is not safe to rely on intuition. We should rather under-
stand (3.14) as a general postulate from which (3.13) follows as a special case. We
will see later (section 6.6) that (3.14) itself is a special case of the general quantum
measurement postulates, which apply to measurements of any physical quantity
(not only position).
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3.6.1 Probability density and probability current

The following mathematical quantities give very useful insights into the behaviour
of solutions to the Schrödinger equation:

The probability density

ρ(x, t) = |ψ(x, t)|2 . (3.15)

We see that the Born rule justifies the interpretation of ρ(x, t) as a probability
density. If we measure the position of the particle at time t, the probability of
finding the particle in the interval [x, x+ dx] is ρ(x, t)dx.

The probability current

J(x, t) = − i�
2m

{ψ∗(x, t)
∂

∂x
ψ(x, t)−

(
∂

∂x
ψ∗(x, t))ψ(x, t)} . (3.16)

It is easy to verify from (3.10) that

∂J

∂x
+

∂ρ

∂t
= 0 . (3.17)

Thus ρ and J do indeed satisfy a conservation equation, with ρ behaving as a
density whose total integral is conserved, and J as a current describing the density
flux.

The key point here is that ∂ρ
∂t can be written as a spatial derivative of some

quantity. This means that we can calculate the time derivative of the probability
of finding the particle in a region [a, b]:

d

dt

� b

a

|ψ(x, t)|2dx =

� b

a

− ∂

∂x
J(x, t)dx = J(a, t)− J(b, t) .

(3.18)
The last term describes the probability density flux across the endpoints of the
interval – the “net flow of probability out of (or in to) the interval”.

Now if ψ is normalised, i.e. Eqn (3.12) holds, then ψ(x) → 0 as x → ±∞.
Thus J(x) → 0 as x → ±∞, assuming (as we will here) that ∂

∂xψ(x) is bounded as
x → ∞. Thus

d

dt

� ∞

−∞
|ψ(x, t)|2dx = lim

a→−∞
J(a, t)− lim

b→∞
J(b, t) = 0 . (3.19)

The total probability of finding the particle in−∞ < x < ∞ is thus constant over
time:

�∞
−∞ |ψ(y, t)|2dy = 1 for any time t. So, the Born probabilistic interpretation

is consistent: whenever we look for the particle, we will definitely find it somewhere,
and only in one place.

Notes:
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• We will consider measurements of quantities other than position later.

• The Born rule says nothing about where the particle is if we do not measure
its position. According to the standard understanding of quantum mechanics,
this is a question with no well-defined answer: the particle’s position is not
defined unless we measure it.

As we’ll see, according to quantum mechanics, we can generally only calcu-
late the probabilities of possible measurement results: we can’t predict with
certainty which result will occur. Moreover, the theory only allows us to pre-
dict probabilities for the possible results of measurements that actually take
place in a given experiment. We cannot consistently combine these predic-
tions with those for other measurements that could have been made had we
done a different experiment instead.11

We’ll see when we discuss the general measurement postulates of quantum
mechanics in section 6.6 that measuring the position of a particle generally
changes its wavefunction. Recall the earlier discussion of the 2-slit experiment.
We found no definite answer to the question “which slit did the particle go
through?” – unless we put detectors beside the slits, and this changed the
experiment and changed the interference pattern.

11See again the analysis of the double slit experiment above, and (for example) the relevant
chapters of Feynman’s lecture notes, for further discussion of this.
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