
7 The 3D Schrödinger equation

7.1 Quantum mechanics in three dimensions

We can develop quantum mechanics in three dimensions following the analogy with

classical mechanics that we used to obtain the 1D Schrödinger equation. The clas-

sical state of a single particle is described by six dynamical variables: its position

x = (x1, x2, x3) =
�3

i=1 xiei and momentum p = (p1, p2, p3) =
�3

i=1 piei, where ei

are the standard orthonormal basis vectors. The particle’s energy is

H =
p.p

2M
+ V (x) . (7.1)

(Throughout this section, we use M to denote mass, to avoid confusion with the
L3 angular momentum eigenvalue denoted by m which we introduce below.)

Proceeding by analogy with the 1D case, we can introduce operators

x̂i = xi ( i.e. multiplication by xi) ,

p̂i = −i�
∂

∂xi
,

or in vector form x̂ = x (7.2)

p̂ = −i�∇ (7.3)

and Ĥ =
p̂.p̂

2M
+ V (x)

= − �2

2M
∇2 + V (x) . (7.4)

Here we define a vector operator A to be a triple of operators (A1, A2, A3) such
that Aψ(x) = (A1ψ(x), A2ψ(x), A3ψ(x)) is a vector for all wavefunctions ψ(x) and
all x.

We also take the wavefunction ψ to depend on 3 space and 1 time coordinates:

ψ ≡ ψ(x, t). The 3D normalisation condition is�
|ψ(x, t)|2d3x = 1 . (7.5)

Following the 1D analogy gives us the 3D time-dependent Schrödinger equation

Ĥψ(x, t) = i�
∂

∂t
ψ(x, t) , (7.6)

or more explicitly, for a time-independent potential V ,

− �2

2M
∇2ψ(x, t) + V (x)ψ(x, t) = i�

∂

∂t
ψ(x, t) . (7.7)

Using the method of separation of variables, as before, we can derive the 3D time-
independent Schrödinger equation

− �2

2M
∇2ψ(x) + V (x)ψ(x) = Eψ(x) . (7.8)
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We can define the probability density and current

ρ(x, t) = |ψ(x, t)|2 , (7.9)

J(x, t) =
−i�
2m

(ψ∗(x, t)∇ψ(x, t)− (∇ψ∗(x, t))ψ(x, t)) ,

(7.10)

and as in the 1D case (cf (3.17)) we can show that they obey a conservation equation

∂ρ

∂t
+∇.J = 0 . (7.11)

Notice that the 3D Schrödinger equation, like the 1D SE, is linear and the
superposition principle thus applies to its solutions: there is a physical solution
corresponding to any linear combination of two (or more) physical solutions.

The Born rule naturally extends to the 3D case: the probability of finding a

particle in a small 3D volume V which contains a point x0 is

�

V

|ψ(x, t)|2d3x ≈ V |ψ(x0, t)|2 (7.12)

= V ρ(x0, t) .

We define the inner product of 3D wavefunctions by

(ψ1,ψ2) =

�
ψ∗
1(x)ψ2(x)d

3x .

The definition of the expectation value of an observable Â in terms of the cor-
responding hermitian operator A also naturally extends to 3D wavefunctions:

�Â�ψ =

�
ψ∗(x, t)Aψ(x, t)d3x = (ψ, Aψ) . (7.13)

We can thus define the uncertainty ΔψA as in (6.21), using the definition (7.13) for
expectation values.

The proofs of theorems 6.1 and 6.2 apply to hermitian operators on 3D wave-
functions just as to hermitian operators on 1D wavefunctions.

Theorem 6.3 also extends to hermitian operators on 3D wavefunctions: the dis-
crete and continuous sets of eigenfunctions of a hermitian operator form a complete
orthogonal basis of th normalisable complex-valued functions ψ(x) of 3D vectors x.

7.2 Spherically symmetric potentials

The 3D time-independent Schrödinger equation simplifies considerably when
the potential V (x) is spherically symmetric about the origin.20 We call this a
central potential.

20Of course, if V is spherically symmetric about any given point, we can redefine our coordinates
by translation to make that point the origin.
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It is convenient to use spherical polar coordinates

x1 = r sin θ cosφ , x2 = r sin θ sinφ , x3 = r cos θ , (7.14)

which have ranges 0 ≤ r < ∞, 0 ≤ φ < 2π, 0 ≤ θ ≤ π.

In spherical polars, a central potential V (x) ≡ V (r, θ,φ) depends only on r = |x|.
Recall that in Cartesian coordinates we have ∇2 = ∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3
. In spherical

polars this becomes21

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2
(7.15)

For spherically symmetric stationary states ψ(r), the time-independent SE sim-

plifies. We have ∂ψ
∂θ = ∂ψ

∂φ = 0 and so

∇2ψ =
1

r2
d

dr
(r2

d

dr
)ψ

=
d2ψ

dr2
+

2

r

dψ

dr

=
1

r

d2

dr2
(rψ) . (7.16)

so we have

− �2

2M

1

r

d2

dr2
(rψ(r)) + V (r)ψ(r) = Eψ(r) , (7.17)

which we can rewrite as

− �2

2M

d2

dr2
(rψ(r)) + V (r)(rψ(r)) = E(rψ(r)) . (7.18)

Notice that (7.18) is the 1D time-independent SE for φ(r) = rψ(r), on the
interval 0 ≤ r < ∞.

We require φ(r) → 0 as r → 0, otherwise ψ(r) ≈ O(1/r) as r → 0 and so is
singular at r = 0. It can be shown that this means that the 3D Schrödinger equation
(7.7) fails to hold there.22

Any solution to (7.18) with φ(r) → 0 as r → 0 can be extended to an odd parity

solution φ̃(r) of the 1D SE in −∞ < r < ∞ of the same energy, with φ̃(r) and dφ̃
dr

continuously defined at r = 0, by defining

φ̃(r) =

�
φ(r) r ≥ 0 ,
−φ(−r) r < 0 .

(7.19)

Conversely, any odd parity solution of the 1D SE for −∞ < r < ∞ defines a
solution to (7.18) with φ(r) → 0 as r → 0 and dφ

dr finite at r = 0. Provided that

21See IA Vector Calculus, or e.g. Collinson “Introductory Vector Analysis”, Chap. 12.
22* See Dirac, “The Principles of Quantum Mechanics” (4th edition), Chap. VI for a full

discussion. *
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V (r) is finite and continuous at r = 0, these are the correct continuity conditions
for solutions of the 3D SE: they imply that ψ and ψ� are continuous at the origin.

Solving (7.18) thus becomes equivalent to finding odd parity solutions to the 1D
SE for −∞ < r < ∞.

Comments We will show later (see Thm. 7.2) that the ground state (the
lowest energy bound state, if there is one) of a 3D quantum system with spherically
symmetric potential is itself spherically symmetric. (Cf. the 1D result that the
ground state of a symmetric potential always has even parity.) Hence we can always
use the method above to obtain the ground state.

One might wonder whether there might not exist even parity solutions φ+(r) of

the 1D SE with the property that φ+(0) = dφ+

dr (0) = 0, which would also define
solutions to (7.18) for 0 ≤ r < ∞ with the appropriate properties. The following
lemma rules this out.

Lemma 7.1. There are no even parity solutions φ+(r) of the 1D SE with the

property that φ+(0) =
dφ+

dr (0) = 0.

Proof. If such a solution φ+ were to exist, we could define a continuous odd parity
solution φ−(r) by

φ−(r) =

�
φ+(r) r ≥ 0 ,
−φ+(−r) r < 0 .

(7.20)

Then, by the superposition principle, φ(r) = φ+(r) − φ−(r) would also be a
solution. But we have φ(r) = 0 for r > 0, so that all derivatives of φ vanish for
r ≥ 0. The Schrödinger equation has no non-trivial solutions with this property:
hence φ(r) = 0 for all r. Hence φ+(r) = φ−(r) = 0 for all r, so in particular
the hypothesised even parity solution φ+ is not a physical solution, as it vanishes
everywhere. �

7.3 Examples of spherically symmetric potentials

7.3.1 The spherical harmonic oscillator

has potential

V (r) =
1

2
Mω2r2 .

The general method we have just given for constructing spherically symmetric
stationary states shows that its spherically symmetric stationary states are related
by (7.19) to the odd parity bound states of the 1D harmonic oscillator, and have
the same energies. Thus the lowest energy spherically symmetric stationary state –
i.e. the ground state – has energy 3

2�ω, and the higher energy (excited) spherically
symmetric states have energies (2n+ 3

2 )�ω for positive integer n.

7.3.2 The spherical square well

has potential

V (r) =

�
−U r < a ,
0 r > a .

(7.21)

By the above argument, spherically symmetric stationary states correspond to odd
parity bound states of the 1D square well potential

V (x) =

�
−U |x| < a ,
0 |x| > a .

(7.22)
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These, if they exist, can be obtained by the graphical method used earlier to
obtain 1D square well potential bound states. In particular, one can show (cf.
section 4 above and example sheet I, question 10) that there exists an odd parity
bound state if and only if �

2MU

�2
≥ π

2a
. (7.23)

So, if this condition is not satisfied, the 3D spherical square well does not have a
spherically symmetric stationary state: i.e. it does not have a ground state, and
thus does not have any bound states.

As this illustrates, 3D potential wells (continuous potentials with V (x) ≤ 0 for
all x, V (x) < 0 for some x, and V (x) = 0 for |x| > a, for some finite a) do not
necessarily have bound states. This is in contrast to the 1D case:

Exercise (important!): Show that all 1D potential wells have at least
one bound state.

7.4 Spherically symmetric bound states of the hydrogen atom

We model the hydrogen atom by treating the proton as infinitely massive and at
rest.23

We seek spherically symmetric bound state wavefunctions ψ(r) for the electron

orbiting in a Coulomb potential V (r) = − e2

4π�0r
:

− �2

2M
(
d2ψ

dr2
+

2

r

dψ

dr
)− e2

4π�0r
ψ(r) = Eψ(r) , (7.24)

for some E < 0. Writing a = e2M
2π�0�2 , b =

√
−2ME
� , we have

d2ψ

dr2
+

2

r

dψ

dr
+

a

r
ψ − b2ψ = 0 . (7.25)

If we try the ansatz

ψ(r) ≈ exp(−br) , (7.26)

we see the first and fourth terms dominate the other two for large r, and cancel one
another precisely. This suggests trying an ansatz of the form ψ(r) = f(r) exp(−br),
with f(r) =

�∞
n=0 anr

n, in the hope of finding values of the coefficients an such
that the four terms cancel precisely to all orders. (Cf. our first solution to the
harmonic oscillator.)

Our previous discussion assumed that V (r) is nonsingular as r → 0. Since here
V (r) diverges as r → 0, we cannot use the same justification as previously to argue
that that φ(r) = rψ(r) → 0 as r → 0. However, we still require ψ(r) to define a
normalisable 3D wavefunction, so that

0 <

� ∞

r=0

r2|ψ(r)|2dr < ∞ .

This implies that ψ(r) = O(r−1) as r → 0, i.e. that ψ can at worst have a singularity
of order r−1 at zero. We also require that ψ should correspond to a continuous
wavefunction. This excludes a singularity of order r−1, so we require that ψ is
regular — i.e. has a finite limit — as r → 0.

23*This can be shown to be an excellent approximation (see Part II Principles of Quantum
Mechanics): it gives the correct energy levels up to an overall constant factor (the same for each
energy level) of order 1 + (me/mp) ≈ 1.0005.*
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We have
d2f

dr2
+ (

2

r
− 2b)

df

dr
+

1

r
(a− 2b)f(r) = 0 . (7.27)

Hence

∞�

n=0

(ann(n− 1)rn−2 + 2annr
n−2 − 2bannr

n−1 + (a− 2b)anr
n−1) = 0 (7.28)

and taking the coefficient of rn−2 we have

ann(n− 1) + 2ann− 2ban−1(n− 1) + (a− 2b)an−1 = 0 for n ≥ 1 . (7.29)

This gives

an = an−1
(2b(n− 1)− (a− 2b))

n(n− 1) + 2n

= an−1
2bn− a

n(n+ 1)
. (7.30)

We thus have that an → 2b
n an−1 for large n. If the coefficients do not vanish for large

n, this means they have the asymptotic behaviour of the coefficients of exp(2br),
i.e. f(r) ≈ C exp(2br). This would give ψ(r) ≈ C exp(2br) exp(−br) = exp(br),
leading to an unnormalisable and thus unphysical wavefunction. So there must be
some integer N ≥ 1 for which aN = 0, and we can take N to be the smallest such
integer.

Then aN−1 �= 0, so that aN = 0 implies 2bN = a or b = a/2N , and so

E = − �2a2

8MN 2

= − Me4

32π2�20�2N 2
, (7.31)

which is precisely the energy spectrum of the Bohr orbits, but now derived from
quantum mechanics (though still with an assumption of spherical symmetry, which
we will need to relax to obtain the general orbital wavefunction).

From

a = 2bN and an = an−1
2bn− a

n(n+ 1)
(7.32)

we obtain

an = an−12b
n−N

n(n+ 1)
. (7.33)

This gives solutions of the form

f(r) =





1 N = 1 ,
(1− br) N = 2 ,
(1− 2br + 2

3 (br)
2) N = 3 ,

(7.34)
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and generally f(r) = L1
N−1(2br) where L1

N−1 is one of the associated Laguerre
polynomials.24

The corresponding wavefunctions are ψ(r) = CL1
N−1(2br) exp(−br), where the

constant C is determined by normalisation.

7.5 Canonical Commutation Relations in 3D

From (7.2) we have

x̂i = xi (multiplication by xi) , (7.35)

p̂i = −i�
∂

∂xi
, (7.36)

and so, by calculating the action on a general wavefunction as before, we obtain

[x̂i, x̂j] = 0 = [p̂i, p̂j] (7.37)

[x̂i, p̂j] = i�δij . (7.38)

(The prefactors i on the right hand sides are
√
−1.)

7.6 Orbital Angular Momentum

Recall that in classical mechanics we define the angular momentum vector

L = x ∧ p , Li = �ijkxjpk , (7.39)

and that L is conserved in a spherically symmetric potential V (r).

We define the quantum mechanical operators

L̂ = −i�x̂ ∧∇ , L̂i = −i��ijkx̂j
∂

∂xk
, (7.40)

and the total angular momentum

L̂2 = L̂.L̂ = L̂2
1 + L̂2

2 + L̂2
3 . (7.41)

24*There is a simple expression for the associated Laguerre polynomials:

Lk
N (x) =

1

N !
exx−k dN

dxN
(xN+ke−x) .

Some plots of L0
N for small N and some other information about the Laguerre polynomials (Lk

N
for k = 0) and the associated Laguerre polynomials can be found
at mathworld.wolfram.com/LaguerrePolynomial.html
and at mathworld.wolfram.com/AssociatedLaguerrePolynomial.html .*
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7.6.1 Angular momentum commutation relations

[L̂i, L̂j ] = −�2�ilm�jnp[x̂l
∂

∂xm
, x̂n

∂

∂xp
]

= −�2�ilm�jnp([x̂l
∂

∂xm
, x̂n]

∂

∂xp
+ x̂n[x̂l

∂

∂xm
,

∂

∂xp
])

= −�2�ilm�jnp(x̂l[
∂

∂xm
, x̂n]

∂

∂xp
+ x̂n[x̂l,

∂

∂xp
]

∂

∂xm
)

= −�2�ilm�jnp(x̂lδmn
∂

∂xp
− x̂nδlp

∂

∂xm
)

= −�2�mil�mpj x̂l
∂

∂xp
− �2�pjn�pmix̂n

∂

∂xm
)

= −�2(δipδlj − δijδlp)x̂l
∂

∂xp
− �2(δjmδni − δjiδnm)(x̂n

∂

∂xm
)

= −�2(x̂j
∂

∂xi
− δij x̂l

∂

∂xl
− x̂i

∂

∂xj
+ δij x̂l

∂

∂xl
)

= i��ijkL̂k .

=

[L̂2, L̂i] = [L̂jL̂j , L̂i]

= [L̂j , L̂i]L̂j + L̂j [L̂j , L̂i]

= i�(�jik(L̂kL̂j + L̂jL̂k))

= 0 . (7.42)

Since the L̂i do not commute, they are not simultaneously diagonalisable. However,
L̂2 and any one of the L̂i can be simultaneously diagonalised, since [L̂2, L̂i] = 0.

We also have

[L̂i, x̂j ] = i��ijkx̂k , (7.43)

[L̂i, p̂j ] = i��ijkp̂k , (7.44)

[L̂i,
�

j

x̂2
j ] = 2i��ijkx̂j x̂k = 0 , (7.45)

[L̂i,
�

j

p̂2j ] = 2i��ijkp̂j p̂k = 0 . (7.46)

Now we have that r̂ =
��

j x̂j
2. We also have that [L̂i,

�
j x̂j

2] = 0. One can

show directly from this (see part II Principles of Quantum Mechanics), or check
by calculation (Exercise), that [L̂i, r̂] = 0. More generally, one can show that
[L̂i, V (r)] = 0 for any spherically symmetric potential V (r). We also have that

[L̂i,
p̂.p̂

2m
] = [L̂i,

1

2m

�

j

p2j ] = 0 . (7.47)
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So, for any spherically symmetric potential V (r), we have that

[L̂i, Ĥ] = [L̂i,−
�2

2M
∇2 + V (r)]

= 0 , (7.48)

[L̂2, Ĥ] = 0 . (7.49)

In other words, Ĥ, L̂i and L̂2 all commute with one another.

Comment This is an important and powerful result. Given any 3D quan-
tum system, we can find a basis of simultaneous eigenfunctions of Ĥ, L̂2 and L̂3.
(The standard convention is to use L̂3. Of course, as the operators are related by
rotational symmetry, L̂1 or L̂2 would work equally well.) As we will see, working
in such a basis greatly simplifies the solution of the time-independent SE.

7.6.2 Angular momentum operators in spherical polar coordinates

We can translate the definitions of L̂i to spherical polars. We have

x1 = r sin θ cosφ , x2 = r sin θ sinφ , x3 = r cos θ . (7.50)

Thus

∂

∂θ
=

�

i

∂xi

∂θ

∂

∂xi

= r cos θ cosφ
∂

∂x1
+ r cos θ sinφ

∂

∂x2
− r sin θ

∂

∂x3
, (7.51)

∂

∂φ
=

�

i

∂xi

∂φ

∂

∂xi

= −r sin θ sinφ
∂

∂x1
+ r sin θ cosφ

∂

∂x2
. (7.52)

We thus obtain

i�(cosφ cot θ
∂

∂φ
+ sinφ

∂

∂θ
) = −i�(x2

∂

∂x3
− x3

∂

∂x2
)

= L̂1 , (7.53)

i�(sinφ cot θ
∂

∂φ
+ cosφ

∂

∂θ
) = −i�(x3

∂

∂x1
− x1

∂

∂x3
)

= L̂2 , (7.54)

−i�
∂

∂φ
= −i�(x1

∂

∂x2
− x2

∂

∂x1
)

= L̂3 . (7.55)

Notes 1. We could obtain these identities more straightforwardly but long-
windedly by first expressing ∂

∂xi
in terms of r, θ,φ, ∂

∂r ,
∂
∂θ ,

∂
∂φ and thus converting

the definitions of the L̂i into spherical polars.
2. Observe in particular that the L̂i are all independent of ∂

∂r , as we expect

from the commutation relation [L̂i, r] = 0.
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We can also obtain

L̂2 =
�

i

L̂2
i = (L̂1 + iL̂2)(L̂1 − iL̂2) + i[L̂1, L̂2] + L̂2

3

= (L̂1 + iL̂2)(L̂1 − iL̂2)− �L̂3 + L̂2
3

= −�2(cot θeiφ
∂

∂φ
− ieiφ

∂

∂θ
)(cot θe−iφ ∂

∂φ
+ ie−iφ ∂

∂θ
)

+ i�2
∂

∂φ
− �2

∂2

∂φ2

= −�2(
∂2

∂θ2
+ cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
)

= −�2(
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2
) . (7.56)

Recall that [L̂2, L̂3] = 0. We have

L̂2 = −�2(
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2
) ,

L̂3 = −i�
∂

∂φ
. (7.57)

We can thus seek simultaneous eigenfunctions of the form Y (θ) exp(imφ), since
L̂3 exp(imφ) = �m exp(imφ). As φ is defined modulo 2π, we need eim(φ+2π) = eimφ,
so ei2mπ = 1 and m is an integer.

This leaves us with an eigenvalue equation for L̂2:

−�2(
1

sin θ

d

dθ
(sin θ

d

dθ
)− m2

sin2 θ
)Y (θ) = λY (θ) . (7.58)

From a physics perspective, the key fact about this equation is that we can show it
has non-singular solutions if and only if λ = �2l(l + 1) for some integers l ≥ 0 and
m such that m is in the range −l ≤ m ≤ l.

Less crucial for now are the details, although it is interesting to see them. The
solutions are called the associated Legendre functions Pl,m(θ). They can be obtained
by reducing the equation to a standard form, using the substitution w = cos θ. Since
θ is in the range 0 ≤ θ ≤ π, we have −1 ≤ w ≤ 1. We obtain the equation

−�2
d

dw
((1− w2)

dY

dw
)− (λ− m2

1− w2
)Y = 0 . (7.59)

For m = 0 and λ = �2l(l + 1) this is Legendre’s differential equation for functions
of degree l, which has solution Pl(w). For general m it’s an associated Legendre
differential equation.25

The associated Legendre functions can be obtained from the Legendre polyno-
mials Pl by

Pl,m(θ) = (sin θ)|m| d|m|

d(cos θ)|m|Pl(cos θ) . (7.60)

We thus have the overall solution given by the spherical harmonic with total

angular momentum quantum number l and L̂3 quantum number m:

Yl,m(θ,φ) = Pl,m(θ) exp(imφ) ,
25Details can be found in Whittaker and Watson, “A course of modern analysis”, 4th edition,

(C.U.P., 1996).
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an eigenfunction of L̂2 and L̂3 with eigenvalues �2l(l + 1) and �m respectively.
(For plots of some spherical harmonics see e.g.

mathworld.wolfram.com/SphericalHarmonic.html.)

7.7 Solving the 3D Schrödinger equation for a spherically
symmetric potential

The time-independent SE is

− �2

2M
∇2ψ + V (r)ψ = Eψ . (7.61)

Recall that in spherical polar coordinates

∇2 =
1

r2
∂

∂r
(r2

∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2

L̂2 = −�2(
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2
) . (7.62)

So we have

−�2∇2 = −�2(
∂2

∂r2
+

2

r

∂

∂r
) +

1

r2
L̂2 . (7.63)

We can thus rewrite the SE as

− �2

2M
(
∂2

∂r2
+

2

r

∂

∂r
) +

1

2Mr2
L̂2)ψ(r, θ,φ) + V (r)ψ(r, θ,φ) = Eψ(r, θ,φ) . (7.64)

If we separate variables, writing ψ(r, θ,φ) = ψ(r)Yl,m(θ,φ), this gives

− �2

2M
(
d2

dr2
+
2

r

d

dr
)ψ(r)+(

�2

2Mr2
l(l+1))+V (r))ψ(r) = Eψ(r) .

(7.65)

So, we have a standard 1D radial Schrödinger equation for ψ(r), with the modified

potential

V (r) +
�2l(l + 1)

2Mr2
.

Comments:

• We have seen that we can find a basis of simultaneous eigenfunctions of Ĥ, L̂2

and L̂3, with eigenvalues E, l and m respectively. Since the modified potential
depends on l but not m, if an energy eigenspace with eigenvalue E contains
any state with L̂2 eigenvalue l, it must contain states with all the associated
L̂3 eigenvalues: m = −l,−l + 1, . . . , l. This greatly simplifies the analysis of
orbital angular momentum eigenstates associated with a given energy level.

• If the angular momentum l = 0 then also m = 0, and the function Y00(θ,φ) is
constant. Thus all zero angular momentum states are spherically symmetric.
Conversely, since the Ylm for l �= 0 are orthogonal to Y00, all spherically
symmetric states have zero angular momentum. This makes sense physically,
since a state ψ with �L�ψ �= 0 by definition has a nonzero vector associated
with it, which breaks spherical symmetry.
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• *The fact that, in quantum mechanics, we can express −�2∇2 in terms of a
differential operator involving only r together with a term proportional to the
operator L2 is a consequence of the fact that, in classical mechanics, kinetic
energy can be expressed as a sum of terms proportional to the radial momen-
tum squared and the angular momentum squared. However, to derive the
first result from the second requires addressing one or two subtleties beyond
our scope. (A discussion can be found in Dirac’s book “The Principles of
Quantum Mechanics”, 4th edition, Section 38.)*

• *We can understand qualitatively why we should expect the radial SE to de-
pend on the angular momentum l, by noting that the “extra potential energy”

term l(l+1)�2

2Mr2 corresponds to the potential needed to produce the centripetal

force L2

mr3 which would keep a classical particle of angular momentum L in a

circular orbit, if we set L = �
�

l(l + 1).*

7.7.1 Degeneracies

As noted above, the values of E for which this equation is solvable clearly may
depend on l but not on m. As there are (2l + 1) possible values of m = −l,−l +
1, . . . , l, each energy level would have degeneracy (2l + 1), assuming there are no
further degeneracies.

The ground state We can now prove a result we stated earlier.

Theorem 7.2. The ground state (i.e. lowest energy bound state) solution of the
3D Schrödinger equation for a spherically symmetric potential must have l = m = 0
and is thus spherically symmetric.

Proof. The proof is by contradiction. Suppose that ψ(r, θ,φ) = ψ(r)Ylm(θ,φ), for

some l > 0, is the lowest energy solution and has energy E. We have that

− �2

2M
(
d2

dr2
+
2

r

d

dr
)ψ(r)+(

�2

2Mr2
l(l+1))+V (r))ψ(r) = Eψ(r) .

(7.66)

Now as Ĥ, L̂2 and L̂3 are commuting hermitian operators, the space of wave-

functions is spanned by their simultaneous eigenstates. In particular, the space

of zero angular momentum wavefunctions is spanned by orthonormal eigenstates

ψi(r, θ,φ) of Ĥ with E = Ei and l = m = 0, which have the form

ψi(r, θ,φ) = ψi(r)Y00(θ,φ) = ψi(r) . (7.67)

(In other words, the eigenstates ψi are all spherically symmetric solutions.) We
can thus write ψ(r) =

�
i ciψi(r) for some constants ci such that

�
i |ci|2 = 1.
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E =

� ∞

r=0

ψ∗(r)(− �2

2M
(
d2

dr2
+

2

r

d

dr
)ψ(r)

+ (
�2

2Mr2
l(l + 1)) + V (r))ψ(r)) (7.68)

=

� ∞
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2M
(
d2

dr2
+
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d

dr
+ V (r)))ψ(r)

+

� ∞

r=0

ψ∗(r)(
�2

2Mr2
l(l + 1))ψ(r) (7.69)

>

� ∞
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(
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dr2
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dr
+ V (r)))ψ(r)

=

� ∞
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∗
i (r)(−

�2

2M
(
d2

dr2
+

2
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d

dr
+ V (r)))

�

j

cjψj(r) . (7.70)

Now this last term is
�

i

c∗i ciEi =
�

i

|ci|2Ei . (7.71)

Since we have that E >
�

i |ci|2Ei and that
�

i |ci|2 = 1, we must have that
E > Ei for at least one value of i. Hence E is not the lowest energy eigenvalue, in
contradiction to our original assumption. �

7.8 The Hydrogen atom

We can now obtain the general bound state solution for particles in the potential

V (r) = − e2

4π�0r
.

As we did in obtaining spherically symmetric solutions, we define the quantities

a = e2M
2π�0�2 , b =

√
−2ME
� . We obtain from Eqn. (7.65) the equation

(
d2

dr2
+

2

r

d

dr
)ψ(r) + (− 1

r2
l(l + 1)) +

a

r
)ψ(r) = b2ψ(r) . (7.72)

As we saw in discussing Eqn. (7.26), we see that the ansatz ψ(r) ≈ exp(−br) means
that the two terms which are largest asymptotically (the first term on the LHS and
the term on the RHS) cancel. This again suggests trying an ansatz of the form
ψ(r) = f(r) exp(−br), for a power series f(r).

However, the new singular term ( 1
r2 l(l+1)) means that the previously obtained

solutions are not generally valid.
It turns out to be convenient to write the power series in the form f(r) =�∞

n=0 anr
n+σ, where σ, a constant to be determined, is chosen so that a0 �= 0: i.e.

the power series begins with a term proportional to rσ.
Considering the coefficient of rσ−2, we have −(σ(σ − 1) + 2σ) + l(l + 1) = 0 or

σ(σ + 1) = l(l + 1), a quadratic equation with roots σ = l and σ = −(l + 1). As
l ≥ 0, we choose σ = l to avoid a divergence at r = 0.

We now have

an =
(n+ l)2b− a

n(n+ 2l + 1)
an−1 for n ≥ 1 . (7.73)
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As before, if the power series does not terminate this reduces to an ≈ 2b
n an−1 for

large n, which would give us f(r) ≈ exp(2br) and

ψ(r) ≈ exp(2br) exp(−br) ≈ exp(br) ,

a divergent and unnormalisable wavefunction, which is physically unacceptable.

The power series must thus terminate, so we have a = 2b(n+ l), for some n ≥ 1.
Rewriting, we have b = a

2N for some N ≥ l + 1, giving the same overall set of
solutions for b, and thus the same energy levels (i.e. the Bohr energy levels), as the
spherically symmetric case with l = 0 we considered earlier:

E = − Me4

32π2�20�2
1

N2
.

7.8.1 Energy level degeneracies

Each value of N is consistent with

l = 0, 1, . . . (N − 1) ; (7.74)

each value of l is consistent with

m = −l,−(l − 1), . . . , l . (7.75)

(The first of these degeneracies occurs only for a Coulomb force law; the second, as

we have seen, holds for any central potential.) The total number of values of (m, l)

consistent with N is thus

N−1�

l=0

l�

m=−l

1 =
N−1�

l=0

(2l+1) = 2(
1

2
N(N−1))+N = N 2 . (7.76)

In fact, the true degeneracy of the Nth energy level of the hydrogen atom in
a full non-relativistic quantum mechanical treatment is 2N2: the extra factor of 2
arises from an intrinsically quantum mechanical degree of freedom, the electron spin,
which has no direct classical analogue. (This is covered in the Part II Principles of
Quantum Mechanics course.)

7.9 Towards the periodic table

We could try to generalize this discussion to atoms other than hydrogen. These
have a nucleus with charge +Ze, orbited by Z independent electrons, where the
atomic number Z is an integer greater than one.

If we take the nucleus to be fixed, as we did with hydrogen, this means we need
to solve the Schrödinger equation for Z independent electrons in a central Coulomb
potential. This is not so simple, since the electrons also interact with each other.
If we ignore this temporarily, we can obtain solutions of the form

ψ(x1, . . . ,xZ) = ψ1(x1) . . .ψZ(xZ) , (7.77)

where the ψj are rescaled solutions for the hydrogen atom (the rescaling is because
the nucleus has charge +Ze instead of +e). The energy is just the sum

E =
Z�

i=1

Ei . (7.78)
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It turns out that for relatively small atoms this gives qualitatively the right
form, with corrections arising from the electron-electron interactions that can be
calculated using perturbation theory.26 However, we also need to allow for the
Pauli exclusion principle, which implies that no two electrons in the same atom can
be in the same state. So the lowest overall energy state is given by filling up the
energy levels in order of increasing energy, starting with the lowest. Allowing for
the twofold degeneracy arising from spin, as above, we have 2N2 states in the Nth
energy level. This gives us an atom with a full energy level with Z = 2, 10 = 8+2, . . .
for N = 1, 2, . . .; these are the elements helium, neon, . . .. The elements with outer
electrons in the 1st and 2nd energy levels fill out the corresponding first two rows of
the periodic table. The analysis gets more complicated as atoms get larger, because
electron-electron interactions become more important, and this qualitative picture
is not adequate for the third and higher rows of the periodic table.

We can understand that helium and neon are chemically inert (unreactive) as
a consequence of the fact that they have full energy levels, which turns out to be
a very stable state that does not easily undergo transitions by capturing or losing
electrons.

26See Part II Principles of Quantum Mechanics for details.
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