Heisenberg's Uncertainty Principle

We define the uncertainty $\Delta_{\psi} A$ in a measurement of A on the state ψ by

$$
\begin{align*}
\left(\Delta_{\psi} A\right)^{2} & =\left\langle\left(A-\langle A\rangle_{\psi}\right)^{2}\right\rangle_{\psi} \\
& =\left\langle A^{2}\right\rangle_{\psi}-\left(\langle A\rangle_{\psi}\right)^{2} \tag{6.21}
\end{align*}
$$

Note that Theorem 1 implies that the expectation value and the
uncertainty are always real, as we would expect if they are physically meaningful.
We can easily verify that $\left(\Delta_{\psi} A\right)^{2}$ is the statistical variance of the probability distribution for the possible outcomes of the

Infill
put
this deviation.
We can verify this directly for operators with discrete eigenvalues, and also for position.
vertu.

