

Noisy and dynamic patterns in plants

James Locke

Pattern formation in algae

Division rule + zone of inhibition

Mitchison GJ et al., Science, 1976, Journal of cell science 1972, Nature 1972.

Biology catches up with the model......

Fail

A model for vein formation in plants

Canalisation hypothesis (Sachs and Mitchison)

A model for vein formation in plants

Initial state

Final state

Strands created by localised sources (stars)

Two sources leading to different patterns

Vein formation in growing leaves

Model rediscovered 20 years later

Formation of secondary veins

Rolland Lagan and Prusinkiewicz 2005

Interplay of vein formation and tissue growth

Lee et al 2014

Theoretical auxin-based hypotheses for PIN polarity

Up-the-concentration (Jönsson et al. 2006, Smith et al. 2006)

Intracellular partitioning (Abley et al., 2013)

PIN polarization at the single cell level

Pau Formosa-Jordan

Green: PIN1-GFP Red: PM-TdTomato

In collaboration with Henrik Jonsson, Elliot Meyerowitz

Studying PIN at the single cell level

How do PIN look under the microscope in single cells?

A quantitative approach

How do cells respond to auxin gradients?

Arabidopsis protoplasts, a possible model system to understand polarity

PIN1 shows rich spatio-temporal dynamics in fresh protoplasts without cell wall

Green: PIN1-GFP Red: Membrane marker

Fresh protoplasts, dt=30min

In 'uniform conditions', PIN and Membrane Marker are equally polar, and its polarisation is quite random

Can we drive persistent PIN-specific polarity through auxin gradients?

Cell director 2D: a framework to study how protoplasts respond to auxin gradients

Under an auxin gradient, PIN tends to be oriented towards one direction, and cells are more polar in PIN

Lab went a bit crazy

Graeme was also busy....

The polar transport of auxin and vein patterns in plants

G J Mitchison 1981 Proc R Soc Lond B

G J Mitchison 2015 Plos Comp Biol

Conformal growth of Arabidopsis leaves
G J Mitchison 2016 J Theo Biol

Fig. 9. Factorising the growth into two 12 h periods, using the Möbius transformation with matrix \sqrt{A} , where A represents the best fit for the 24 h between days 7 and 8 (leaf 4). The composition of the two maps, i.e. the result of following the red arrows and then the blue arrows, is equivalent to the 24 h best fit.

