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Photons and half-silvered mirrors (beamsplitters)

light - —s

Now make light weaker and weaker.
Put detectors in the two arms: we see corpuscular behaviour (photons)

D2 Exactly one of D1, D2 fires,
at random, probabilities /2 each.
] Afterwards photon is in |0> or |1> state
/ as seen (if non-destructive detection).

light > 7 > D1

(1) Further experiments show: each photon goes both ways!
If we look to see “which way” we get a definite answer and
photon state changes to be in only that arm.



Why say “both ways™? - Interferometer
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Why say “both ways™? - Interferometer
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Any device able to detect photon
(non-destructively)

*If D absent, photon always registers at D1

*If D present, photon registers at D2 (or at D1) with probability
half (and D may or may not detect a photon).

So can sometimes get:

Photon seen at D2 but D remains “untouched” (no detection).
This can only happen if D could have detected the photon.



The basic “counterfactual” (CF) effect

D2
* Photon emerges from half-mirror going
‘both ways”.
/ * Exactly one detector always fires

light -,/ > D1 -- never both!



The basic “counterfactual” (CF) effect

* Photon emerges from half-mirror going
“both ways”.
/ * Exactly one detector always fires
light -,/ > D1 -- never both!

Now remove D2

If D1 does not fire then photon is fully in vertical path

i.e. photon state is changed even though the agent (D1)

has been unaffected (photon found absent in horizontal path!)

“State change caused by fact that D1 cou/d have detected the photon
even though it, in fact, did not.”

Can use this to learn whether a proposed detector can function without
actually using the detector!



CF quantum effects

* Elizur-Vaidman (1993) bomb testing problem
* Interaction-free imaging
* Computational applications (G. Mitchison & R. Jozsa 2000)

Have many bombs.

Trigger so sensitive that any disturbance
will set bomb off!

But bomb may be a dud - trigger jammed.

Problem:
How can we tell if a bomb is good without setting it off ?

No classical solution!
There is a quantum solution!



Photon interferometer (again)
D2
/

/.l‘ ,K‘ » D1

Solution of bomb testing problem:
D is bomb trigger (e.g. as a mirror). Photon deflects off it at lower corner.

Dud bomb -- cannot register photon, photon never seen at D2.

Good bomb -- able to register presence of photon.

Sometimes photon seen at D2 but bomb unexploded.
Then it must then be a good bomb !

(Half the time, photon will be seen absent by bomb,
and half of those times it will register at D2.)



Interaction-free Imaging

D is presence or absence of an opaque object.

Absence: just empty space! -- photon passes through
and always registers at D1.

Presence: path blocked! -- photon seen at D2 half the time, and half
these times photon not reqgistered to go along lower path!
I.e. then no photon hits object! (All this works with prob 7a.)

Improved set-up: probability 2 improved to 1- € (any € > 0).
Example: photographic film at D2: with raster scan,
can get silhouette image of object without shining any light on it!

Experimental demonstration (S. Inoue & G. Bjork 2000):

“...here we present experimental results where a photographic film’s
shape is imaged on an identical piece of film without exposing
the first film.”

Application: silhouette X-ray imaging without radiation damage!



Counterfactual quantum computation

Imagine replacing bomb by a (quantum) computer QC of following kind:
* QC has on/off switch, initially off (switch settings: off = 0, on = 1);
* QC programmed ready to solve a yes/no problem if switched on,
for time T (denote answers r by r= 0 for ‘yes’ and r= 1 for ‘no’;
* QC has output register initially set to 0, that will contain the answer r.

So initially we have |0) |0) |R) and intime T get:

switch output prog

0) |j) |[R) —— ]0) |j) |R) (computer off)

1) 1) IR} —— [1)[j@r) |R) (computeron)
For the two possible (unknown) answers r= 0 or 1 we have unitary
operations Uy or [J; on switch and output registers, with

Uy = Identity operation /1 = CNOT quantum operation

when the computer is run.



In the interferometer: replace bomb by computer
with photon being the agent capable of switching it on.

If r=1: computer works as a photon detector i.e. wait time T
and look at output register (like “good bomb exploding”.)

If r=0: computer does nothing i.e. output register unchanged
(whether it ran or not, cannot be a photon detector)
(like “bomb with jammed trigger remaining unchanged”.)

So as before:

if we see photon at D2 we can be sure that r= 1, and then

if also the output register shows value 0 we know the computer
was not run (“good bomb that remains unexploded”.)

These two things viz. CF computation of answer when it is 1,
happen with probability V.

If instead we see photon at D1: this always occurs if r= 0 but
sometimes occurs for r= 1; and then sometimes computer is run too
(“bomb is exploded”) . Thus if photon seen at D1 we cannot deduce r.



Improving the % : not running the computer many times!

Look just at switch and output registers initially in |0) |0)
Choose N (largish), write § = (%)/N

Rotate switch to cos #|0) 4 sin A]1)
Wait for time 7, get cos#|0)|0) + sin8|1)|r)

Measure the output register (only):

ifris actually 1:

we see 0, prob. 0032 0 and state becomes |0) |0) (computer not run)
or see 1, prob. sin’f ... |1} |1) (computer has run)
(and latter are also the new states of switch/output registers).

If see 1 we know r = 1 but abort (as computer has run too!)

if ris actually O:

we see 0 always and state becomes cos 6|0)|0) + sin 8]1)|0)

Repeat the above N times (each time rotating the switch by 6
and measuring output register).
After N repeats, finally measure switch to see if itis 0 or 1.



If r=0:

state will have rotated to |1) |0) so switch will certainly

show 1 (and computer will have been run).

If r=1:

with prob (cos 5% )" state will be |0) |0) and switch will certainly
show 0. In thls case all intermediate measurements are 0 too,

so the computer has not run yet we learn that r = 1!/

And note: (cos 7)Y — 1 as N — .
For any protocol write

P. = probability or learning result r (ifitis r)
without running the computer.

In the above protocol we have
P,=0 and P,—1 as N — 0.

Can we have both P, and P, nonzero, and both — 1 7?7



G. Mitchison and R. Jozsa “Counterfactual computation”,
Proc. Roy. Soc. (Lond.) A457, p1175-1193 (2001)

Formulated notion of a general protocol
with insertions of the computer.

Defined a precise mathematical notion of the feature that
we learn the result r “without running the computer”.

Proved:
THEOREM
(i) It is possible to have both P, and P, nonzero, but

(i) We always have Py + P; <1 (rather than 2!)

(iii) If either of P, or P, approach 1, then number N of insertions
of the computer must have N — oo .
I.e. we then need to not run the computer unboundedly many times.



