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Definition: A distribution                             of k random variables ଵ  is 
n-exchangeable if there is a distribution
with the same marginal which is permutation-invariant, that is, 

for any permutation 
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Definition: A distribution                             of k random variables ଵ  is 
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De Finetti (1931): A infinitely exchangeable sequence of binary random variables
is a convex combination of product distributions.
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Definition: A distribution                             of k random variables ଵ  is 
n-exchangeable if there is a distribution
with the same marginal which is permutation-invariant, that is, 
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Diaconis & Freedman (1980): An n-exchangeable sequence is close to a convex
combination of product distributions: 



From classical to quantum mechanics: more symmetry

probability 
distribution

density operator

Vector of  non-negative reals 
summing to 1 

  complex nonnegative matrix 
with trace 1 

k red or green balls, randomly chosen k qubits (“quantum colored balls”)

quantumclassical



From classical to quantum mechanics: more symmetry

probability 
distribution

density operator

switching colors

Vector of  non-negative reals 
summing to 1 

  complex Hermitan matrix 
with trace 1 

for any permutation 

k red or green balls, randomly chosen k qubits (“quantum colored balls”)

permuting variables  permuting subsystems 

changing colors



• If   is a probability distribution over states, 
then                                                   is n-exchangeable 

Exchangeable multipartite quantum states 

Examples: Symmetric extension:

• For any qudit state        the state
is n-exchangeable 

Definition: A state                          of k qudits is n-exchangeable if there is a state                                                                      
with the same reduced density operator

such that for any permutation 



Exchangeable multipartite quantum states 

Example: Symmetric extension:

• For any permutation-invariant pure state
the reduced density operator

is n-exchangeable.  

Physical example: ground state of a system with 
pairwise (identical) interactions. 

Definition: A state                          of k qudits is n-exchangeable if there is a state                                                                      
with the same reduced density operator

such that for any permutation 



Finitely exchangeable quantum states: de Finetti theorems

Thm:  An n-exchangeable quantum state     is close to a convex combination of product states: 

probability measure        such that 

• Non-commutative analog of Diaconis and Freedman’s 
result on finitely exchangeable sequences

• Applications: separability testing, quantum key 
distribution, variational physics

Definition: A state                          of k qudits is n-exchangeable if there is a state                                                                      
with the same reduced density operator

such that for any permutation 



de Finetti theorems for unitarily invariant  states



increasing symmetry:
the twirling map

More
symmetry

Twirling
map



The `twirled’ state                                                                                           

is n-exchangeable and has the additional symmetry

Twirling
map

1. Take any n-exchangeable state

2. Apply a (Haar-random unitary) rotation        to each subsystem. 

𝑈 𝑈

𝑈

𝑈

“unitary invariance”

increasing symmetry:
the twirling map



n-exchangeable unitarily invariant states

form a polytope. 
Extreme points are partial traces of (normalized) Young projectors.
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the normalized 
projector onto

Schur-Weyl duality

n-exchangeable unitarily invariant states

(convex combination
of product states with 
spectrum r)

partial trace of
normalized Young
projector with
shape 𝝀

Key lemma:

Young diagram

spectrum

This choice yields a 
de Finetti theorem!

The ½ de Finetti theorem bounds the distance of the polytope(s) to the convex hull of the blue set.



Key lemma:

𝑇 semistandard Young tableaux
𝛼 box

Schur function shifted Schur function 
Old and new mathematics combined

Issai Schur, 1875-1941



Key lemma:
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