
Part IIC Lent term 2019-2020

QUANTUM INFORMATION & COMPUTATION

Nilanjana Datta, DAMTP Cambridge

1 Basic notions of classical computation

and computational complexity

We begin by setting down the basic notions of classical computation which will later be
readily generalised to provide a precise definition of quantum computation and associated
notions of quantum computational complexity classes.

Computational tasks:
The input to a computation will always be taken to be a bit string. The input size is
the number of bits in the bit string. For example if the input is 0110101 then the input
size is 7. Note that strings from any other alphabet can always be encoded as bit strings
(with only a linear overhead in the length of the string). For example decimal integers
are conventionally represented via their binary representation.

A computational task is not just a single task such as “is 10111 prime?” (where we are
interpreting the bit string as an integer in binary) but a whole family of similar tasks such
as “given an n-bit string A (for any n), is A prime?” The output of a computation is also
a bit string. If this is a single bit (with values variously called 0/1 or “accept/reject” or
“yes/no”) then the computational task is called a decision problem. For computational
complexity considerations (cf later), we will be especially interested in how various kinds
of computational resources (principally time – number of steps, or space – amount of
memory needed) grow as a function of input size n.

Let B = B1 = {0, 1} and let Bn denote the set of all n-bit strings. Let B∗ denote the set
of all n-bit strings, for all n i.e. B∗ = ∪∞n=1Bn. A subset L of B∗ is called a language.
Thus a decision problem corresponds to the recognition of a language viz. those strings
for which the answer is “yes” or “accept” or 1, denoting membership of L. For example
primality testing as above is the decision problem of recognising the language L ⊆ B∗

where L is the subset of all bit strings that represent prime numbers in binary. More
general computational tasks have outputs that are bit strings of length > 1. For example
the task FACTOR(x) with input bit string x is required to output a bit string y which
is a (non-trivial) factor of x, or output 1 if x is prime.

Circuit model of classical computation:
There are various possible ways of defining what is meant by a “computation” e.g. the
Turing machine model, the circuit (or gate array) model, cellular automata etc. Although
these look quite different, they can all be shown to be equivalent for the purposes of
assessing the complexity of obtaining the answer for a computational task. Here we will
discuss only the circuit model, as it provides the easiest passage to a notion of quantum
computation.

1



For each n the computation with inputs of size n begins with the input string x = b1 . . . bn
extended with a number of extra bits all set to 0 viz. b1 . . . bn00 . . . 0. These latter bits
provide “extra working space” that may be needed in the course of the computation. A
computational step is the application of a designated Boolean operation (or Boolean
gate) to designated bits, thus updating the total bit string. These elementary steps should
be fixed operations and for example, not become more complicated with increasing n. We
restrict the Boolean gates to be AND, OR or NOT. It can be shown that these operations
are universal i.e. any Boolean function f : Bm → Bn at all can be constructed by the
sequential application of just these simple operations. The output of the computation is
the value of some designated subset of bits after the final step.

Then for each input size n we have a so-called circuit Cn which is just a prescribed
sequence of computational steps. Cn depends only on n and not on the the particular
input x of size n. In total we have a circuit family (C1, C2, . . . , Cn, . . .). We think
of Cn as “the computer program” or algorithm for inputs of size n. (There is actually
an extra technical subtlety here that we will just gloss over: we also require that the
descriptions of the circuits Cn should be generated in a suitably simple computational
way as a function of n, giving a so-called uniform circuit family. This prevents us from
“cheating” by coding the answer of some hard computational problem into the changing
structure of Cn with n.)

Randomised classical computations:
It is useful to extend out model of classical computation to also incorporate classical
probabilistic choices (for later comparison with outputs of quantum measurements, that
are generally probabilistic). This is done in the circuit model as follows: for input b1 . . . bn
we extend the starting string b1 . . . bn00 . . . 0 to b1 . . . bnr1 . . . rk00 . . . 0 where r1 . . . rk is a
sequence of bits each of which is set to 0 or 1 uniformly at random. If the computation
is repeated with the same input b1 . . . bn the random bits will generally be different.
The output is now a sample from a probability distribution over all possible output
strings, which is generated by the uniformly random choice of r1 . . . rk. (Thus any output
probability must always have the form a/2k for some integer a ≤ 2k). Then in specific
computational algorithms we normally require the output to be correct “with suitably
high probability”, specified according to some desired criteria. This formalism with
random input bits can be used to implement probabilistic choices of gates. For example
suppose we wish to apply either AND or OR at some point, chosen with probability half.
Consider the 3-bit gate whose action is as follows: if the first bit is 0 (resp. 1) apply OR
(resp. AND) to the last two bits. Then we use this gate with a random input to the first
bit.

Polynomial time complexity classes P and BPP
In computational complexity theory a fundamental issue is the time complexity of algo-
rithms: how many steps (in the worst case) does the algorithm require for any input of
size n? In the circuit model the number of steps on inputs of size n is taken to mean
the total number of gates in the circuit Cn i.e. the size of the circuit Cn. Let T (n) be
the size of Cn, which we also interpret as a measure of the run time of the algorithm
as a function of input size n. We are especially interested in the question of whether
T (n) is bounded by a polynomial function of n (i.e. is T (n) < cnk for all large n for

2



some positive constants k, c?) or else, does T (n) grow faster than any polynomial (e.g.
exponential functions such as T (n) = 2n or 2

√
n or nlogn have this property).

Remark. (Notations for growth rates in computer science (CS) literature.)
For a positive function T (n) we write T (n) = O(f(n)) if there are positive constants c
and n0 such that T (n) ≤ cf(n) for all n > n0, i.e. “T grows no faster than f”. We
write T (n) = O(poly(n)) if T (n) = O(nk) for some constant k, i.e. T grows at most
polynomially with n.
Note that this use of big-O is slightly different from common usage in say calculus, where
instead of n→∞ we consider x→ 0 e.g. writing ex = 1 + x+O(x2).
In CS usage if T (n) is O(n2) then it is also O(n3) but in calculus O(x2) terms are not
also O(x3).
In the CS literature we also commonly find other notations: we write T (n) = Ω(f(n)) to
mean T (n) ≥ cf(n) for all n > somen0 and some positive constant c, i.e. “T grows at
least as fast as f”; and we write T (n) = Θ(f(n)) to mean c2f(n) ≤ T (n) ≤ c1f(n) for
all n > somen0 and positive constants c1, c2, i.e. T is both O(f(n)) and Ω(f(n)), i.e. “T
grows at rate f”.
In this course we will use only the big-O notation (and not Ω or Θ). �

Although computations with any run time T (n) are computable in principle, poly time
computations are regarded as “tractable” or “computable in practice”. The term ef-
ficient algorithm is also synonymous with poly time algorithm. If T (n) is not
polynomially bounded then the computation is regarded as “intractable” or “not com-
putable in practice” as the physical resource of time will, for fairly small n values, exceed
sensibly available limits (e.g. running time on any available computer may exceed the
age of the universe).

We have the following standard terminology for some classes of languages (or sometimes
these terms are applied to algorithms themselves, that satisfy the stated conditions):

P (“poly time”):
class of all languages for which the membership problem has a classical algorithm that
runs in polynomial time and gives the correct answer with certainty.

BPP (“bounded error probabilistic poly time”):
class of all languages whose membership problem has a classical randomised algorithm
that runs in poly time and gives the correct answer with probability at least 2/3 for every
input.

The class BPP is generally viewed as the mathematical formalisation of “decision prob-
lems that are feasible on a classical computer”.

Example: Let the problem FACTOR(N,M) be the following: given an integer N of n
digits and M < N , decide if N has a non-trivial factor less than M or not. The fastest
known classical algorithm runs in time expO(n

1
3 (log n)

2
3 ) i.e. more than exponential in

the cube root of the input size. Thus this problem is not known to be in BPP.

Remark (about the definition of BPP)
We have required the output to be correct with probability 2/3. However it may be shown

3



that “2/3” here may be replaced by any other number 1− ε that’s strictly greater than
half without changing the contents of the class i.e. if there is a poly time algorithm for a
problem that succeeds with probability 1

2
+ δ (for any chosen δ > 0, however small) then

there is also a poly time algorithm that succeeds with probability 0.500001 or 0.99999 or
indeed 1− ε for any 0 < ε < 1

2
(however small). This result relies on the following fact,

sometimes called the amplification lemma (proved using the Chernoff bound for repeated
Bernoulli trials cf Nielsen and Chuang p154 for a simple proof): if we have an algorithm
for a decision problem that works correctly with probability 1

2
+δ then consider repeating

the algorithm K times and taking the majority vote of all K answers as our final answer.
Then this answer is correct with a probability at least 1 − exp(−2δ2K), approaching 1
exponentially fast in K. Thus given any ε > 0 this probability will exceed 1 − ε for
some constant K, and if the original algorithm had poly running time T (n) then our
K-repetition majority vote strategy has running time KT (n) which is still polynomial in
n. �

Remark. (Optional. Polynomial space complexity.)
If we replace the computational resource of time (i.e. number of gates or elementary
computational steps) by that of space (i.e. amount of memory or number of bits needed
to perform the computation) then we obtain the complexity class PSPACE, of all de-
cision problems that can be solved within a polynomially bounded amount of space (as
a function of input size) and no imposed restriction on time. It is easy to see that we
have the inclusions P ⊆ BPP ⊆ PSPACE. Indeed any poly time computation occurs
in poly space since poly many one- and two-bit gates can act on at most poly many
bits in total. Similarly in any randomised poly time computation, for each fixed choice
of the random bits, we can perform the associated computation in poly space. Then
doing this sequentially in turn (re-using the same poly space allocation) for each of the
exponentially many choices of the random bits, we can keep a running total of accept
and reject answers, and thus get BPP ⊆ PSPACE.
Astonishingly(!?) it is not known whether any of the preceding inclusions are equalities
or strict inclusions!

1.1 Query complexity and promise problems

In quantum computation (cf later) and the study of its properties relative to classical
computation, there is another computational scenario that is often considered. This is
the formalism of “black box promise problems” with an associated measure of complexity
called “query complexity”.

In this scenario, instead of being given an input bit string of some length n, we are
given as input a black box or oracle that computes some (here Boolean, but sometimes
more general) function f : Bm → Bn. We can query the black box by giving it inputs
and this is the only access we have to the function and its values. No other use of
the box is allowed. In particular we cannot “look inside it” to see its actual operation
and learn information about the function f . Thus, at the start, it is unknown exactly
which function f is, but there is often an a priori promise on f i.e. some stated a priori
restriction on the possible form of f . Our task is to determine some desired property of

4



f e.g. some feature of the set of all values of f . We want to achieve this by querying
the box the least possible number of times. In our circuits in addition to our usual gates
we may use the black box as a gate, each use counting as just one step of computation.
The query complexity of such an algorithm is simply the number of times that the
oracle is used (as a function of its “size” e.g. as measured by m+ n). In addition to the
query complexity we may also be interested in the total time complexity, counting also
the number of gates used to process the answers to the queries in addition to merely the
number of queries themselves.

Example 1 The following are examples of black box promise problems that will be espe-
cially relevant in this course.

The “balanced versus constant” problem
Input: a black box for a Boolean function f : Bn → B (one bit output).
Promise: f is either (a) a constant function (f(x) = 0 for all x or f(x) = 1 for all x)
or (b) a “balanced” function in the sense that f(x) = 0 resp. 1 for exactly half of the 2n

inputs x.
Problem: Determine whether f is balanced or constant. We could ask for the answer
to be correct with certainty or merely with some probability, say 0.99 in every case.

Boolean satisfiability
Input: a black box for a Boolean function f : Bn → B.
Promise: no restriction on the form of f .
Problem: determine whether there is an input x such that f(x) = 1.

Search
Input: a black box for a Boolean function f : Bn → B.
Promise: There is a unique x such that f(x) = 1.
Problem: find this special x.

Periodicity
Input: a black box for a function f : Zn → Zn

(where Zn denotes the set of integers mod n).
Promise: f is periodic i.e. there is a least r such that f(x+ r) = f(x) for all x (and +
here denotes addition mod n).
Problem: find the period r.

In each case we are interested in how the minimum number of queries grows as a function
of the natural parameter n (for quantum versus classical algorithms).

5


