
Part IIC Lent term 2019-2020

QUANTUM INFORMATION & COMPUTATION

Nilanjana Datta, DAMTP Cambridge

1 The quantum Fourier transform and periodicities

1.1 Quantum Fourier transform mod N

The quantum Fourier transform (QFT) can be viewed as a generalisation of the Hadamard
operation to dimensions N > 2. Later we will be especially interested in N = 2n i.e.
the QFT on an n-qubit space. As a pure mathematical construction it is the same as
the so-called discrete Fourier transform which is widely used in digital signal and image
processing. It is a unitary matrix that arises naturally in a wide variety of mathematical
situations so it fits well into the quantum formalism, providing a bridge between a quan-
tum operation and certain mathematical problems. In fact QFT is at the heart of most
known quantum algorithms that provide a significant speedup over classical computation.

Let VN denote a state space with an orthonormal basis {|0〉 , |1〉 , . . . , |N − 1〉} labelled
by ZN . The quantum Fourier transform (QFT) modulo N , denoted QFTN (or just QFT
when N is clear) is the unitary transform on HN defined by:

QFT : |x〉 → 1√
N

N−1∑
y=0

exp(2πi
xy

N
) |y〉 (1)

Thus the jkth matrix entry is

[QFT]jk =
1√
N

exp

(
2πi

jk

N

)
j, k = 0, . . . , N − 1

(note: here we are labelling rows and columns from 0 to N − 1 in ZN rather than 1 to
N .) If ω = e2πi/N is the primitive N th root of unity then the matrix elements are all
powers of ω (divided by

√
N) following a simple pattern:

• The initial row and column always contain only 1’s.
• Each row (or column) is a geometric sequence. The kth row (or column) for k =
0, . . . , N − 1 is the sequence of powers of ωk (starting with power 0 up to power N − 1).

Many properties of QFT, including the fact that it is unitary, follow from a basic algebraic
fact about roots of unity and geometric series. Recall the formula for the sum of any
geometric series

1 + α + α2 + . . .+ αN−1 =

{
1−αN

1−α if α 6= 1

N if α = 1

Then setting α = wK (for some chosen K) we have α = 1 iff K is a multiple of N . Thus

1 + ωK + ω2K + . . .+ ω(N−1)K =

{
N if K is a multiple of N .
0 if K is not a multiple of N .

(2)

1

Now to see that QFT is unitary, consider the jkth element of the matrix product QFT†QFT.
This is 1/N times the sum of “the jth row of QFT† lined up against the kth column of
QFT”. The latter sum is just the geometric series with α = ωk−j, divided by N . So using
eq. (2) we get 0/N = 0 if k 6= j and we get N/N = 1 if k = j i.e. QFT†QFT is the
identity matrix and QFT is unitary.

1.2 Periodicity determination

A fundamental application of the Fourier transform (both classically and quantumly) is
the determination of periodicity exhibited in a function or some other given data. Some
important mathematical problems (such as integer factorisation, as we will see later) can
be reduced to problems of periodicity determination.

Suppose we are given (a black box for) a function f : ZN → Y (where typically Y = ZM
for some M) and it is promised that f is periodic with some period r i.e. there is a
smallest number r such that f(x + r) = f(x) for all X ∈ ZN (and + is addition mod
N). We will also assume that f is one-to-one in each period i.e. f(x1) 6= f(x2) for all
0 ≤ x1 < x2 < r. We want a method of determining r with some constant level of
probability (0.99 say) that is independent of increasing the size of N . It can be shown
that O(

√
N) queries to f (i.e. a number not bounded by any polynomial in logN)) are

necessary and sufficient to achieve this in classical computation with a black box for f .
In some cases further information may be available about f e.g. we may have an explicit
formula for it but the periodicity determination may still be hard (we will see an example
later), requiring a number of steps that is not bounded by any polynomial in logN . In
the quantum scenario we will see that r can always be determined with any constant
high level of probability 1 − ε using only O(log logN) queries and poly(logN) further
processing steps i.e. exponentially faster than any classical method.

Quantum algorithm for periodicity determination

We begin by constructing a uniform superposition 1√
N

∑N−1
x=0 |x〉 and one query to Uf to

obtain the state |f〉 = 1√
N

∑
allx |x〉 |f(x)〉. Since f is periodic (with unknown period r)

r must divide N exactly and we set A = N/r, which is the number of periods. If we
measure the second register we will see some value y = f(x0) where x0 is the least x
having f(x) = y. Then the first register will be projected into an equal superposition of
the A values of x = x0, x0 + r, x0 + 2r, . . . , x0 + (A− 1)r for which f(x) = y i.e. we get

|per〉 =
1√
A

A−1∑
j=0

|x0 + jr〉

Here 0 ≤ x0 ≤ r − 1 has been chosen uniformly at random (by the extended Born rule,
since each possible value y of f occurs the same number A of times i.e. once in each
period.) If we measure the register of |per〉 we will see x0 + j0r where j0 has been picked
uniformly at random too. Thus we have a random period (the jth0 period) and a random
element in it (determined by x0) i.e. overall we get a random number between 0 and

2

N−1, giving no information about r at all. Nevertheless the state |per〉 seems to contain
the information of r!

The resolution of this problem is to use the Fourier transform which is known even
in classical image processing, to be able to pick up periodicities in a periodic pattern
irrespective of an overall random shift of the pattern (e.g. the x0 in |per〉). Applying
QFT to |per〉 we get (using eq. (1) with x replaced by x0 + jr, and summing over j):

QFT |per〉 =
1√
NA

A−1∑
j=0

(
N−1∑
y=0

ω(x0+jr)y |y〉

)
=

1√
NA

N−1∑
y=0

ωx0y

[
A−1∑
j=0

ωjry

]
|y〉 . (3)

(In the last equality we have reversed the order of summation and factored out the j-
independent ωxoy terms). Which labels y appear here with nonzero amplitude? Look at
the square-bracketed coefficient of |y〉 in eq. (3). It is a geometric series with powers of
α = e2πiry/N = (e2πi/A)y summed from power 0 to power A − 1. According to eq. (2)
(now applied with A taking the role of N there) this sum is zero whenever y is not a
multiple of A and the sum is A otherwise i.e. only multiples of A = N/r survive as y
values:

A−1∑
j=0

ωjry =

{
A if y = kN/r for k = 0, . . . , r − 1
0 otherwise

and

QFT |per〉 =

√
A

N

r−1∑
k=0

ωx0(kN/r) |kN/r〉 .

The random shift x0 has been eliminated from the labels and now occurs only in a pure
phase ωx0kN/r (whose modulus squared is 1), and the periodicity of the ket labels has
been “inverted” from r to A = N/r. Since measurement probabilities are squared moduli
of the amplitudes, these probabilities are now independent of x0 and depend only on N
(known) and r (to be determined). This is represented schematically in the following
diagram.

- -

6 6

-� -� -�

-� -�

0 x0 x0 + r x0 + 2r 0 N/r 2N/r

(a) for |per〉 (b) for QFT|per〉

. . .

. . .

. . .

. . .

. . .

. . .

labels labels

r
N

1
r

probs probs

x0 r r

N/r N/r

3

If we now measure the label we will obtain a value c which is a multiple k0N/r of N/r
where 0 ≤ k0 ≤ r − 1 has been chosen uniformly at random. Thus c = k0N/r so

k0
r

=
c

N
.

Here c and N are known and k0 is unknown and random, so how do we get r out of
this? If (by some good fortune!) k0 was coprime to r we could cancel c/N down and
read off r as the denominator. If k0 is not coprime to r then this procedure will deliver
a denominator r′ that is smaller than the correct r so f(x) 6= f(x + r′) for any x. Thus
in our process we check the output r value by evaluating f(0) and f(r) and accepting r
as the correct period iff these are equal.

But k0 was chosen at random so what is the chance of getting this good fortune of
coprimality? We’ll use (without proof) the following theorem from number theory:

Theorem 1 (Coprimality theorem) The number of integers less than r that are coprime
to r grows as O(r/ log log r) with increasing r. Hence if k0 < r is chosen at random

prob(k0 coprime to r) ≈ O((r/ log log r)/r) = O(1/ log log r). �

Thus if we repeat the whole process O(log log r) < O(log logN) times we will obtain a
coprime k0 in at least one case with a constant level of probability. Here we have used
the following fact from probability theory:

Lemma 1 If a single trial has success probability p and we repeat the trial M times
independently then for any constant 0 < 1− ε < 1:

prob(at least one success in M trials) > 1− ε if M =
− log ε

p

so to achieve any constant level 1− ε of success probability, O(1/p) trials suffice.

Proof of lemma We have that the probability of at least one success in M runs = 1−
prob(all runs fail) = 1− (1−p)M . Then 1− (1−p)M = 1− ε if M = − log ε

− log(1−p) . Hence any

number of trials ≥ − log ε
− log(1−p) suffices. Now all we want to do is to get a simple estimate

of this threshold value − log ε
− log(1−p) . To do this we use the fact that p < − log(1− p) for all

0 < p < 1 to see that
− log ε

− log(1− p)
<
− log ε

p
.

This allows us to infer that M = O(1/p) repetitions suffice. �

In each round we query f three times (once at the start to make |f〉 and twice more at the
end to check the output r) so we use O(log logN) queries in all. We also need to apply the
“large” unitary gate QFTN (which grows with N) and we show in the next section that
this may be implemented in O((logN)2) elementary steps. The remaining operations

4

are all familiar arithmetic operations on integers of size O(N) (such as cancelling c/N
down to lowest form) that are all well known to be computable in polynomial time
i.e. poly(logN) steps. Thus we succeed in determining the period with any constant
level 1 − ε of success probability with O(log logN) queries and O(poly(logN)) further
computational steps.

We have described above the quantum algorithm for periodicity determination, for pe-
riodic functions on ZN which will form the core of Shor’s efficient quantum algorithm
for integer factorisation (cf below). But the basic problem of periodicity determination
may be mathematically generalised in a natural way from ZN to an arbitrary group G as
the so-called hidden subgroup problem (beyond the scope of this course). This formalism
leads to a class of further important quantum algorithms of which Simon’s algorithm and
the above ZN case are special cases.

1.3 Efficient implementation of QFT

This subsection is not required for exam purposes.

If N = 2n is an integer power of 2 then QFT mod N acts on n qubits. For these dimension
sizes we will show how to implement QFT with a circuit of polynomial size O(n2).
This is a very special property of QFT – almost all unitary transforms in dimension
2n require exponential sized (O(poly(2n)) sized) circuits for their implementation. For
general N (not a power of 2) we do not have an exact efficient (i.e. poly(logN) sized)
implementation. Instead we generally approximate QFT modN by QFT mod 2k where 2k

is near enough to N to incur only an acceptably small reduction in the success probability
of the algorithm.

Our efficient implementation of QFT is really just a translation of the classical fast
Fourier transform formalism to the quantum scenario. We begin by showing that the n
qubit state

QFT |x〉 =
1√
2n

∑
y

exp 2πi
xy

2n
|y〉

is actually a product state of n one-qubit states. We write 0 ≤ x, y ≤ 2n−1 in binary (as
n bit strings of digits):
(Warning: Take care to distinguish arithmetic mod 2n in Z2n used here from the bitwise
arithmetic of n bit strings that we used earlier!)

x = xn−12
n−1 + xn−22

n−2 + . . .+ x12 + x0

y = yn−12
n−1 + yn−22

n−2 + . . .+ y12 + y0

In xy/2n we discard any terms that are whole numbers since these make no contribution
to exp 2πixy/2n and a direct calculation gives:

xy

2n
≡ yn−1(.x0) + yn−2(.x1x0) + . . .+ y0(.xn−1xn−2 . . . x0) (4)

5

where the factors in parentheses are binary expansions e.g.

.x2x1x0 =
x2
2

+
x1
22

+
x0
23

Now ∑
y

exp 2πi
xy

2n
|y〉 =

∑
y0,...,yn−1

exp 2πi
xy

2n
|yn−1〉 |yn−2〉 . . . |y0〉

and we want to insert the expression for xy/2n from eq. (4) into the exponential.
Since eq. (4) is a sum over the different yi’s, the exponential will be a product of
these terms and hence the sum

∑
y0,...,yn−1

splits up into a product of single index sums
(
∑

y0
)(
∑

y1
) . . . (

∑
yn−1

) so we get∑
y

exp 2πi
xy

2n
|y〉 =

∑
y

exp 2πi
xy

2n
|yn−1〉 |yn−2〉 . . . |y0〉 =

(
|0〉+ e2πi(.x0) |1〉

) (
|0〉+ e2πi(.x1x0) |1〉

)
. . .
(
|0〉+ e2πi(.xn−1....x0) |1〉

)
. (5)

Hence QFT|x〉 is the product of corresponding 1-qubit states obtained by taking each
bracket with a 1/

√
2 normalising factor.

This factorisation is the key to building our QFT circuit. It should map each basis (prod-
uct) state |xn−1〉 . . . |x0〉 into the corresponding product state given in eq. (5). Before
we start note that the Hadamard operation can be expressed in our binary fractional
notation as

H |x〉 =
1√
2

(
|0〉+ e2πi(.x) |1〉

)
.

Indeed if x = 0 resp. 1 then .x is 0 resp. 1/2 as a decimal fraction so e2πi(.x) is 1 resp.
-1, as required.

To see how the QFT circuit actually works, let’s look at the example of N = 8 i.e. n = 3.
We want a circuit that transforms |x2〉 |x1〉 |x0〉 to the following states in these three
registers (called y2, y1, y0 at the output):

6

y2 register y1 register y0 register
1√
2

(
|0〉+ e2πi(.x0) |1〉

)
︸ ︷︷ ︸ ⊗ 1√

2

(
|0〉+ e2πi(.x1x0) |1〉

)
︸ ︷︷ ︸ ⊗ 1√

2

(
|0〉+ e2πi(.x2x1x0) |1〉

)
︸ ︷︷ ︸

STAGE 3 STAGE 2 STAGE 1

H |x0〉. H |x1〉 followed by H |x2〉 followed by
This operation depends phase shift e2πi0.0x0 phase shifts of
only on x0 (not x1, x2). i.e. phase shift of e2πi0.01 e2πi0.01 and e2πi0.001

Do it last (third) and controlled by x0 value. controlled by x1 and x0
put result on x0 line. These operations respectively.

depend on x1, x0 (not x2). These operations
Do them second and depend on x0, x1, x2.

accumulate result on x1 line Do them first and
(as x1 line no longer accumulate result on x2 line
needed after this). (as x2 line no longer

needed after this).

After completion of these three stages, the desired final contents of the y0, y1, y2 lines are
respectively on the x2, x1, x0 lines. Thus finally just reverse the order of the qubits in the
string (e.g. by swap operations).

To draw an actual circuit diagram we consider the three stages in turn. In addition to
the Hadamard gate H we’ll introduce the 1-qubit phase gate:

Rd =

(
1 0

0 eiπ/2
d

)
=

(
1 0
0 e2πi(0.00...01)

)
(6)

where the binary digit 1 in the last exponential is (d+ 1) places to the right of the dot.
The controlled-Rd gate, denoted C-Rd acts on two qubits and is defined by the following
actions

C-Rd |0〉 |ψ〉 = |0〉 |ψ〉 C-Rd |1〉 |ψ〉 = |1〉Rd |ψ〉

for any 1-qubit state |ψ〉. Diagramatically this will be denoted as

v
Rd

with a “blob” on the control qubit line.

In terms of all these, the circuit for QFT8 is

7

|x0〉

|x1〉

|x2〉

|y0〉

|y1〉

|y2〉

STAGE 1 STAGE 2 STAGE 3 SWAP

A
A
A
A
A
A
A
A
AA�

�
�
�
�
�
�
�
��

v
v v

H R1 R2

H R1

H

...

...

...

...

...

...

...

...

...

...

...

...

...

...

For N = 8 = 23 we use 3 Hadamard gates (one in each stage) and 2 + 1 controlled phase
gates (in stages 1 and 2 respectively). For general N = 2n we would use n Hadamard
gates (one in each of n stages) and (n− 1) + (n− 2) + . . .+ 2 + 1 = n(n− 1)/2 controlled
phase gates (in stages 1, 2, . . . , n− 1 respectively). Overall we have O(n2) = O((logN)2)
gates for QFT mod N . (In this accounting we have ignored the final swap operation to
reverse the order of qubits, but this requires only a further O(n) 2-qubit SWAP gates to
implement).

8

