Part IIC Lent term 2019-2020

QUANTUM INFORMATION & COMPUTATION
Nilanjana Datta, DAMTP Cambridge

1 Quantum algorithms for search problems

Searching is a fundamentally important task; many important computational problems
can be thought of as searching tasks. For example factoring N can be viewed as a
search amongst integers less than N for one that divides N exactly. Before discussing
Grover’s quantum searching algorithm we introduce the complexity class NP which con-
tains many problems of urgent practical interest, and is fundamentally related to the
notion of searching.

1.1 The class NP and search problems

We can intuitively think of NP as comprising problems that are “hard to solve” (i.e. no
poly time algorithm known) but if a solution (or certificate of a solution) is given then
its correctness can be “easily verified” (i.e. in poly time). Typically we are faced with a
search over an exponentially large space of candidates seeking a “good” candidate, and
given any candidate it is easy to check if it is good or not.

Definition of NP

NP (“nondeterministic poly time”):

a language is in NP if it has a poly-time verifier V. A verifier V for a language L is a
computation with two inputs w and ¢ such that:

(i) if w € L then for some ¢, V(w, c) halts with “accept”. Any such ‘good’ ¢ is called a
certificate of membership for w;

(ii) if w ¢ L then for all ¢, V(w, c) halts with “reject”.

V' is a poly-time verifier if for all inputs (w, ¢) V runs in poly(n) time where n is the size
of w. (Note that in this case ¢ need only be poly(n) long too, since any single step of a
computation can access only a constant number of new bits).

Intuitively (i) and (ii) say that you can certify membership of L (viz. (i)) in such a way
that you cannot be tricked into accepting false w’s (viz. (ii)) and checking of certificates
can be done quickly/efficiently. Note the asymmetry — we are required to certify only
membership, but not non-membership.

Alternative definition of NP

Imagine a computer that operates “nondeterministically” i.e. instead of sequentially
implementing the steps of a single algorithm, at each step the computer duplicates itself
and branches into two computational paths performing two steps (possibly the same)
that are performed simultaneously in parallel (in contrast to a probabilistic choice of
one or other step). Thus after m steps we have 2™ computers performing computations

1

in parallel. We require that all paths eventually halt (with “accept” or “reject”) and
the running time of this nondeterministic computation is defined to be the length of the
longest path.

The computation is defined to:

(i) accept its input if at least one path accepts; and

(ii) reject its input if all paths reject,

(so all inputs are either accepted or rejected as (ii) is the negation of (i)). Then we have:
Proposition: NP is the class of languages that are decided by a nondeterministic
computation with polynomial running time.

[Optional exercise: prove the proposition — given such a nondeterministic computation
and input w, what is the verifier and certificate (if w € L)? Conversely, given a verifier,
what is the corresponding nondeterministic computation with acceptance conditions as
above?]

Note that this notion of computation is “non-physical” for complexity considerations, in
the following sense: although we have just a polynomial running time, we generally need
to invest an ezponential amount of physical resources to actually implement it viz. an
exponential number of computers all running simultaneously, or alternatively, a single
computer with exponential running time - being used to do an exponential number of
computations i.e. all the paths, in succession.

The satisfiability problem SAT: given a Boolean formula ¢(z1,...,x,) with n vari-
ables and single bit output, we want to decide if there is an assignment x; = by, ..., 2, =
b, with ¢(by,...,b,) = 1. Any such assignment is called a satisfying assignment for ¢. A
brute force evaluation of all 2" possible assignments will surely decide this problem but
this generally takes exponential (O(2")) time. More formally, if we encode the formula as
a bit string using some specified representation of its basic symbols, each as a bit string,
then inputs of size m could have O(m) variables and hence the brute force algorithm
runs in exponential time.

It is not known whether SAT is in P or not but it is easily seen to be in NP — if ¢
is satisfiable then the certificate ¢ is any actual satisfying assignment and the verifier
V (¢, c) simply evaluates ¢(c) to check that it is 1. Clearly if ¢ is unsatisfiable we cannot
be tricked into accepting it by this procedure!

Relation to searching: SAT illustrates a fundamental connection between NP and
search problems — for any ¢(z1,...,z,) we have an exponentially large number of can-
didate assignments (possible certificates) and we want to know if a “good” (satisfying)
assignment exists. Although it is not clear how to locate a good candidate “quickly”, if
we are given any prospective candidate we can check quickly if it is good or not. This is
a general feature of very many practical problems e.g. scheduling/timetabling tasks, or
more general simultaneous constraint satisfaction problems.

From the definitions we have the series of inclusions P C NP C PSPACE and P C
BPP C PSPACE, but it is not known whether either of NP and BPP is contained in
the other or not. The most notoriously famous open problem of complexity theory is the
question of whether P is equal to NP or not.

The unstructured search problem

Suppose we are given a large database with N items and we wish to locate a particular
item. We assume that the database is entirely unstructured or unsorted but given any
item we can easily check whether or not it is the one we seek. Our algorithm should
locate the item with some constant level of probability (half say) independent of the
size N. Each access to the database is called a query and we normally regard it as one
computational step.

For classical computation we may argue that O(N) queries will be necessary and suffi-
cient: the good item has completely unknown location; if we examine an item and find
it bad, we gain no further information about the location of the good item (beyond the
fact that it is not the current one).

For quantum computation we will see that O(v/N) queries are sufficient (and in fact that
number is necessary too) to locate the good item i.e. we get a quadratic speedup over
classical search. This speedup does not cross the polynomial vs. exponential divide (the
“holy grail” of complexity theory) but it is still viewed as significant in situations where
exhaustive search is the best known classical algorithm. At first sight we might have
naively expected an exponential quantum speedup here: suppose N = 2" and recall that
a quantum algorithm can easily access 2" items in superposition (by use of only n = log N
Hadamard operations) so we can look up the “goodness” of all items in superposition,
with just one query! We may then hope that we could manipulate the resulting quantum
state to efficiently reveal the good item. But the above-quoted result shows that this
hope cannot be realised. Intuitively the ket corresponding to the good item occurs with
only an exponentially small amplitude in the total superposition (as do all the bad items),
and hence is very difficult to reliably distinguish by any physical process.

Databases are often actually structured, in a way that can facilitate the search. As an
example suppose our N items are labelled by the numbers and we seek a particular one
labelled k. Unstructured search (requiring O(N) queries) corresponds to the database
containing the numbers in some unknown random order. But if the items are structured
by being presented in numerical order, then we can locate k with only O(log N) queries
(in fact exactly 1 xlog N queries) using a binary search procedure: each query of a middle
item eliminates an entire half of the remaining database. This kind of structured search
is common in practice e.g. the lexicographic ordering of names in a large phone book
facilitating search for a given person’s number. But suppose we were given a person’s
number and asked to determine their name. Then we would be faced with an essentially
unstructured search requiring a lot more time!

In the following we will consider quantum algorithms for only unstructured search, in
particular Grover’s quantum searching algorithm which achieves this search in O(v/N)
queries. The issue of understanding which kinds of structure in a database can provide a
good benefit for quantum versus classical computation is still largely open and a topic of
current research. (One interesting known result is that in the case of a linearly ordered
database (such as the phone book above) any quantum algorithm still requires O(log V)
queries but the actual number of queries now is klog N with k strictly less than 1).

1.2 Grover’s Quantum Searching Algorithm

Reflections and projections in Dirac ket notation

We first recall some elementary constructions from linear algebra (some of which we've
already seen near the start of the course) that will be used in the discussion of Grover’s
algorithm. If |«) is any unit length ket vector then

oy = |a) (]
is the operation of projection onto |«), and
I|a> = I — 2 |Oé> <Oz|

(with I denoting the identity operation) is the operation of reflection in the subspace that
is orthogonal to |a) (i.e. vectors in that subspace are left unchanged and general vectors
have their component along |a) reversed in sign). For any unitary operator U it is easy
to check that

Ulljoy U = Ty ULyU' = Iy (1)

Example.
In the space of a single qubit let |ozl> be any chosen unit vector orthogonal to |a). Then
any ket vector may be uniquely expressed as [v) = = |a) +y ‘aL> and

o v) =) Iy lv) = —x|a) +y ‘aL>
so 1|,y is reflection in the line defined by |al>. 0

Grover’s algorithm for unstructured search

We consider the fundamental problem of unstructured search for a unique item, and
describe a quantum algorithm originally due to Lov Grover in 1996 which solves the
problem with only O(v/N) queries. We will give a simple geometrical derivation of the
algorithm (different from Grover’s original algebraic approach, cf Exercise Sheet 4) which
clarifies its workings.

It will be convenient to take the size N of our search space to be a power of 2 wviz.
N = 2". Thus we can label the entries by bit strings (i.e. strings of 0’s and 1’s) of length
n. Our search problem may then be phrased in terms of a black box promise problem as
follows. We will replace the database by a black box which computes an n bit function
f: B, — B. It is promised that f(x) = 0 for all n bit strings except exactly one string,
denoted z((the “marked” position that we seek) for which f(x¢) = 1. Our problem is
to determine z,. As usual we assume that f is given as a unitary transformation U; on
n + 1 qubits defined by

Uy la) ly) = |} [y © f()) (2)

Here the input register |z) consists of n qubits and the output register |y) consists of a
single qubit. The symbol & denotes addition modulo 2. Pictorially we have

|z)

ly @ f(x))

The assumption that the database is unstructured is formalised here as the standard
oracle idealisation that we have no access to the internal workings of Uy — it operates
as a “black box” on the input and output registers, telling us only if the queried item is
good or not.

Instead of using Uy we will generally use a closely related operation denoted I, on n

qubits. It is defined by
— |z) if @ # 2o
[:1:0 ‘I> - { _ |$0> lf T = T (3)

i.e. I, simply inverts the amplitude of the |zo) component and so I, is just the reflection
operator I,y defined above. If z is the n bit string 00 . .. 0 then I, will be written simply
as Iy.

A black box which performs I,, may be simply constructed from U; by just setting the
output register to \%(]O} —|1)). Then the action of Uy leaves the output register in this
state and effects I, on the input register. Pictorially

) Ly |1)
Uy
= (0) = 1) ———r 7 (10) = 1))

Our searching problem becomes the following: we are given a black box which computes
I,, for some n bit string x, and we want to determine the value of x, using the least
number of queries to the box.

We will work in a space of n qubits with a standard basis {|z)} labelled by n-bit strings
x. Let B, denote the space of all n-qubit states. Let H, = H ® ... ® H acting on B,
denote the application of H to each of the n qubits separately.

Grover’s quantum searching algorithm operates as follows. Having no initial information
about zy we begin with the state

) = H,[0...0) = <= |2 ()

which is an equal superposition of all possible xy values. Consider the compound operator

Q, called the Grover iteration operator, defined by
Q = _HnIOHn[xo- (5)

Note that all amplitudes in [¢)p) and all matrix elements of @) are real numbers so to
analyse () we will be able to use the geometrical interpretations of the projection and
reflection operators described above in terms of real (rather than complex) Euclidean
geometry.

In the next section we will explain the structure of () and show that it has a simple
geometrical interpretation:

(Q1): In the plane P(x¢) spanned by (the initially unknown) |x) and |[¢), @ is rotation

T
through angle 2ac where sina = I

(Q2): In the subspace orthogonal to P(xg), @ = —I where [is the identity operation.

Thus by repeatedly applying @ to the starting state |¢y) in P(zg) we may rotate it
around near to |zo) and then determine z, with high probability by a measurement in the

standard basis. For large N, |z¢) and |t¢g) are almost orthogonal and 2a &~ 2 sin o = %ﬁ

Thus about 7+ N iterations will be needed. Each application of) uses one evaluation

of I, and hence of Uy so O(VN) evaluations are required, representing a square root
speedup over the O(N) evaluations needed for a classical unstructured search. More

precisely we have (zq|1y) = \/1_N so the number of iterations needed is the integer nearest

to (arccos \/LN)/ (2 arcsin \/Lﬁ) (which is independent of).

Example: searching for “one in four”.

A simple striking example is the case of N = 4 in which sina = % and () is a rotation
through /3. The initial state is |¢)9) = $(|00) + [01) + [10) 4 |11)) and for any marked
xo the angle between |zq) and [1g) is precisely 7/3 too. Hence after one application of @
i.e. just one query, we will learn the position of any single marked item in a set of four
with certainty! [J

The iteration operator () — reflections and rotations

Using eq. (1) (and noting that H = HT) the Grover iteration operator can be written

Q= —In,0..0) L) = — i) Ljo)-

Now for any |a) and |v) we have I, [v) = |v) —2(|v) |@) i.e. |v) is modified by a multiple
of |a). Hence if |v) is in the (real) plane P(xo) spanned by |zo) and |¢y) = H,|0...0)
then both Iz |v) and I}y, [v) will be in P(xg) too — indeed Ij5,y and I}y, within this
plane are just reflections in the lines perpendicular to |z¢) and [ig) respectively. Hence
@ also preserves the plane P(x() and its action is given by the following fact of Euclidean
geometry.

Lemma: let M; and M, be two mirror lines in the Euclidean plane IR? intersecting at a
point O and let 6 be the angle in the plane from M; to M (cf figure below). Then the

operation of reflection in M; followed by reflection in M, is just (anticlockwise) rotation
by angle 260 about the point O.

Proof of lemma: this is immediate, for example, from standard matrix expressions for
rotations and reflections in R%. [

Using the lemma we see that the action of Iy, 0)/z,) = —Q in P(x) is a rotation
through 25 where cosf = (x¢| H, |0) = \/LN For large N, 8 ~ 7/2 and we have a
rotation of almost w. It would be possible to use this large rotation as the basis of the
quantum searching algorithm but we prefer a smaller incremental motion. We could use
the operator (Ip,0)/|s,))* but there is another solution, explaining the occurrence of the
minus sign in the definition of @:

Lemma: for any 2 dimensional real v we have

I, =1,.

€1

where v is a unit vector perpendicular to v.

Proof: For any vector u we write u = av 4+ bv. Then I, just reverses the sign of a and
—1I, reverses the sign of b. Thus the action of —I,, is the same as that of I,.. [J

Hence Q = —1Ip,0)/|sy) acting in P(xg) is a rotation through 2« where « is the angle
between |zo) and a perpendicular state to H, |0) i.e. sina = (zo| H, |0) = \/—% as claimed

in (Q1).

To see the effect of @) on states orthogonal to P(zg) suppose that |£) € B, is orthogonal
to both H, |0) and |zp). Then from the definitions of I,,y and Ig, .0 we see that
Liooy 1€) = Th, 0y 1€) = |€) so @ = —I in the orthogonal complement to P(x), as claimed
in (Q2).

Thus even though z is unknown (but we are given a black box for I,,,) we can construct
a rotation operator () in the plane spanned by the fixed starting state |¢)y) and the
unknown |zp). Furthermore the angle between the starting state and |x¢) is independent
of the value of z (as the starting state is an equal superposition of all possible z(values)

7

so the number of iterations is independent of zq too.

1.3 Some further features of Grover’s algorithm

Optimality

Grover’s algorithm achieves unstructured search for a unique good item with %\/N
queries. Is it possible to invent an even more ingenious quantum algorithm that uses
fewer queries? Alas the answer is no. We'll just state (without proof):

Theorem Any quantum algorithm that achieves the search for a unique good item in an
unstructured database of size N (with any constant level of probability, say half) must

use O(vV/N) queries. [J

Even more, it can be shown that 7(1 — €)v/ N queries for any € > 0 are insufficient, so
Grover’s algorithm is optimal in a tight sense.

Searching with multiple good items

Suppose our search space contains r > 1 good items and we wish to find any one such
item. Consider first the case that r is known. In this case we’ll see that our previous
algorithm still works; we just need to modify the number of iterations in a way that
depends on 7.

Let the good items be denoted xy,...,x, so now f(z;) =1fori=1,...,r and f(z) =
for all other z’s. Using the same construction that gave I, from Uy in the case of a
single good item, we obtain the operator I (where G stands for “good”) with action:

IG|9€>:{ lz) ifx#x,...

— |y ifrx=x,... 2,
and we will use the iteration operator (cf eq. (5))
Qc = —HnloHplg = =l lc.

Let
|¢G \/— Z |xz

be the equal superposition of all good items. We can separate out the good and bad
parts of the full equal superposition |1)y) writing:

Z . L YN=T

|¥o) =

where [g) = \/% > bad ¢ 1) is the equal superposition of all bad items and [¢¢) and

|vp) are orthogonal states. Note that we can write I =1 —2>""_, |z;) (x;| x; which (on
arbitrary vectors) is not of the form /),y for any single vector |o). But we still have:

Theorem: let P; be the plane spanned by [¢g) and |¢)g). Then the action of Qg
preserves this plane and within Pg this action is rotation through angle 2o where

sin o = (Yolve) = %

Proof: Clearly I}, preserves P since acting on any |¢) it just subtracts a multiple of
|thg). For Ig we note that by eq. (6), Pg can also be characterised as the plane spanned
by the orthogonal states [1)g) and |[¢g). Now Ig |[g) = —|vg) and Ig|g) = |B) so
for any state 1)) = al|yg) + b|wp) in Pg the action of I is to subtract a multiple of
|Y¢) i.e. the result lies in the plane too. This also shows that within Pg, I coincides
with the operation Iy and Qg = — Iy ljpe) = [|%L>[|¢G>. Hence exactly as before, ()

is a rotation through angle 2a¢ where « is the angle between WOL> and [1g) i.e. sina =
(Yoltg) = /r/N. O

Now suppose that we start with |¢) and repeatedly apply Q. The angle between |t)g)
and |¢g) is B where cosf = (Yo|tbg) = /r/N. Each application of Q¢ is a rotation
through 2« where sina = \/r/N so we need /(2a) = (arccos /r/N)/(2arcsin /7 /N)
iterations to move [¢g) very close to [g). If r << N then |¢) and [ihg) are almost
orthogonal (8 ~ 7/2) and a ~ sina = /r/N so we need §+/N/r iterations.

The basic technique and use of the operator (¢ in the above result can be generalised
to give the so-called principle of amplitude amplification (which we won’t discuss in this
course).

Searching with an unknown number of good items
Optional, not required for exam purposes.

We can also adapt the algorithm to work in the case that r is unknown. The apparent
difficulty is the following: if we start with |¢)9) and repeatedly apply the operator @ (in
either case 7 =1 or r > 1) we just rotate the state round and round in the plane of |¢y)
and [¢g). The trick is to know when to stop i.e. when the state lines up closely with
|t¢) in this plane. But if r is unknown then the rotation angle 2« of @ is unknown!

To illustrate the way around this problem we’ll consider only the case where the unknown
r is very small r << N. (General r values can be addressed by a more complicated
argument along similar lines). We choose a number K uniformly randomly in the range
0< K < %\/N , apply K iterations of (), measure the final state and test if the result is
good or not. For r << N each iteration is a rotation through small angle 2a ~ 2,/r/N
i.e. we have chosen a random angle in the range 0 to \/r7 of \/r quadrants. Equivalently
we can choose one of the \/r quadrants at random and then a random angle in it. Now
think of [1)g) as the z-axis direction and |¢g) as the y axis direction (recalling that these
states are almost orthogonal for r << N). If the final rotation angle is within £45° of
the y axis then the final state |¢) has | (|¢g) [* > cos? 45° = 1/2 i.e. we have probability
at least half of seeing a good item in our final measurement. Now for every quadrant,
half the angles are within +45° of the y axis so our randomised procedure above, using
O(V/N) queries, will locate a good item with probability at least 1/4. Repeating the

whole procedure a constant number of times, say M = 10 times, thus still using O(\/N)
queries, we will fail to locate a good item only with tiny probability (3/4)™ = (3/4)1°.

This case of unknown r is directly relevant to the consideration of computational tasks
in NP, where rather than locating a good item we want instead to know whether a good
item exists or not. Consider for example the task SAT: given a Boolean function f, does
it have a satisfying assignment or not? f will generally have some unknown number r > 0
of satisfying assignments. We run the above randomised version of Grover’s algorithm,
say 10 times, checking each output z to see if f(z) = 1 or not. If they all fail we conclude
that f is not satisfiable, which will be correct with high probability 1 — (3/4)!°. In this
way Grover’s algorithm can be applied to any NP problem to provide a quadratic speedup
over classical exhaustive search.

10

