
Part IIC Lent term 2019-2020

QUANTUM INFORMATION & COMPUTATION

Nilanjana Datta, DAMTP Cambridge

1 Shor’s quantum factoring algorithm

We will now describe Shor’s quantum factoring algorithm. Given an integer N with
n = logN digits this algorithm will output a factor 1 < K < N (or output N if N
is a prime) with any chosen constant level of probability 1 − ε, and the algorithm will
run in polynomial time O(n3). Currently the best known classical algorithm (the so-

called number field sieve algorithm) runs in time eO(n1/3(logn)2/3) i.e. there is no known
polynomial time classical algorithm for this task.

We’ll begin by first describing some pure mathematics (number theory) – involving no
quantum ingredients at all – showing how to convert the problem of factoring N into
a problem of periodicity determination. Then we’ll use our quantum period finding
algorithm to achieve the task of factorisation. We’ll encounter (and deal with) a technical
complication: our function will be periodic on the infinite set Z of all integers so for
computational purposes we need to truncate this down to a finite size ZM for some M
(suitably large, depending on N). Since we do not know the period at the outset the
restricted function will not be exactly periodic on ZM : the “last” period will generally
be incomplete (as M is not generally an exact multiple of the period). But we’ll see
that if M is sufficiently large (in fact M = O(N2) will suffice) then there will be enough
complete periods so that the single “corrupted” period has only a negligible effect on our
period finding algorithm. We will also always choose M to be a power of 2 to be able to
use our explicit circuit for QFT mod M for such M ’s.

1.1 Factoring as a periodicity problem – some number theory

Let N with n = logN digits denote the integer that we wish to factorise. We start by
choosing 1 < a < N at random. Next using Euclid’s algorithm (which is a poly-time
algorithm) we compute the greatest common divisor b = gcd(a,N). If b > 1 we are
finished. Thus suppose b = 1 i.e. a and N are coprime. We will use:

Theorem 1 (Euler’s theorem): If a and N are coprime then there is a least power
1 < r < N such that ar ≡ 1 mod N . r is called the order of a mod N .

We omit the proof which may be found in most standard texts on number theory.

Now consider the powers of a as a function of the index i.e. the modular exponential
function:

f : Z→ ZN f(k) = ak mod N (1)

1

Clearly f(k1 + k2) = f(k1)f(k2) and by Euler’s theorem f(r) = 1 so f(k + r) = f(k) for
all k i.e. f is periodic with period r. Also since r is the least integer with f(r) = 1 we
see that f must be one-to-one within each period.

Next suppose we can find r. (We will use our quantum period finding algorithm for this).
Suppose r comes out to be even. Then

ar − 1 = (ar/2 − 1)(ar/2 + 1) ≡ 0 mod N

i.e.
N exactly divides the product (ar/2 − 1)(ar/2 + 1) (2)

(and knowing r we can calculate each of these terms in poly(n) time).

We know N does not divide ar/2 − 1 (since r was the least power x such that ax − 1 is
divisible by N). Thus if N does not divide ar/2 + 1 i.e. if ar/2 ≡/ − 1 mod N , then in
eq. (2) N must partly divide into ar/2− 1 and partly into ar/2 + 1. Hence using Euclid’s
algorithm again, we compute gcd(ar/2 ± 1, N) which will be factors of N .

All this works provided r is even and ar/2 ≡/− 1 mod N . How likely is this, given that a
was chosen at random? We quote the following theorem.

Theorem 2 Suppose N is odd and not a power of a prime. If a < N is chosen uniformly
at random with gcd(a,N) = 1 then Prob(r is even and ar/2 ≡/− 1 mod N) ≥ 1/2.

For a proof of this result see Preskill’s notes page 307 et seq., Nielsen/Chuang appendix
4.3 or A. Ekert and R. Jozsa, Reviews of Modern Physics, vol 68, p733-753 1996, appendix
B.

Hence for any N which is odd and not a prime power, we will obtain a factor with
probability at least half. Given any candidate factor we can check it (in poly(n) time) by
test division into N . Thus repeating the process, say 10 times, we will fail to get a factor
only with tiny probability 1/210, and succeed with any probability 1 − ε with log2 1/ε
repetitions.

Example 1 Consider N = 15 and choose a = 7. Then a direct calculation shows that the
function f(k) = 7k mod 15 for k = 0, 1, 2, . . . has values 1,7,4,13,1,7,4,13,. . . so r = 4.
Thus 74−1 = (72−1)(72 +1) = (48)(50) is divisible by 15 and computing gcd(15, 48) = 3
and gcd(15, 50) = 5 gives non-trivial factors of 15.

All of this works if N is not even or a prime power. So how do we recognise and treat
these latter cases? If N is even (which is easy to recognise!) we immediately have a
factor 2 and we are finished. If N = pl is a prime power then we can identify this case
and find p using the following result (which we quote without proof).

Lemma 1 Suppose N = cl for some integers c, l ≥ 2. Then there is a classical polyno-
mial time algorithm that outputs c.

2

Running this algorithm on any N will output some number c′ and we can check if it
divides N or not. If N was a prime power pl then c′ will be p.

Summarizing the process so far: given N we proceed as follows.
(i) Is N even? If so, output 2 and stop.
(ii) Run the algorithm of lemma 1, test divide the output and stop if a factor of N is
obtained.
(iii) If N is neither even nor a prime power choose 1 < a < N at random and compute
s = gcd(a,N). If s 6= 1 output s and stop.
(iv) If s = 1 find the period r of f(k) = ak mod N . (We will achieve this with any
desired level of constant probability 1− ε using the quantum algorithm described in the
next section).
(v) If r is odd, go back to (iii). If r is even compute t = gcd(ar/2 + 1, N), so by definition
t is a factor of N . If t 6= 1, N output t. If t = 1 or N go back to (iii) and try again.

According to theorem 2 any run of (iv) and (v) will output a factor with probability
> 1/2 so K repetitions of looping back to (iii) will all fail only with probability < 1/2K

which can be made as small as we like.

1.2 Computing the period of f(k) = ak mod N

Let r denote the (as yet unknown) period of f(k) = ak mod N on the infinite domain
Z. We will work on the finite domain D = {0, 1, . . . , 2m− 1} where 2m is the least power
of 2 greater than N2 (see later for the reason for this choice). Let 2m = Br + b with
1 < b < r i.e. the domain D contains B full periods and only the initial part up to b of
the next period. Using a standard application of computation by quantum parallelism
we manufacture the state 1√

2m

∑
x∈D |x〉 |f(x)〉 and measure the second register to obtain

some value y0 = f(x0) with 0 ≤ x0 < r. In the first register we get the state

|per〉 =
1√
A

A−1∑
k=0

|x0 + kr〉

where

A =

{
B + 1 = b2m

r
c+ 1 if x0 < b

B = b2m
r
c if x0 ≥ b.

(3)

Let

QFT2m |per〉 =
2m−1∑
c=0

g(c) |c〉 .

Writing ω = e2πi/2
m

we have

g(c) =
1√

A
√

2m

A−1∑
k=0

ωc(x0+kr) =
ωcx0√
A
√

2m

[
A−1∑
k=0

ωcrk

]
.

3

As before (in Lecture Note 10, where c was called y) the square bracket is a geometric
series with ratio α = ωcr and we have

[. . .] = 1 + α + α2 + . . .+ αA−1 =

{
1−αA

1−α for α 6= 1

A for α = 1.

Let’s look more closely at the ratio α = e2πicr/2
m

. Previously we had r dividing the
denominator 2m exactly and 2m/r = A so if α 6= 1 then α was an Ath root of unity and
the geometric series summed to zero in all these cases. The only c values that survived
were the exact multiples of A = 2m/r having α = 1. There were r such multiples each
with equal |amplitude| of 1√

r
.

In the present case r does not divide 2m exactly generally so α is not an Ath root of
unity and we do not get a lot of “exactly zero” amplitudes for |c〉’s! However we aim to
show that a measurement on QFT|per〉 will yield an integer c-value which is close to a
multiple of 2m/r with suitably high probability.

Consider the r multiples of 2m/r (which are now not integers necessarily!):

0,
2m

r
, 2(

2m

r
), . . . , (r − 1)(

2m

r
).

Each of these is within half of a unique nearest integer. Note that k(2m/r) can never be
exactly half way between two integers since r < N and 2m > N2, so (using 2’s in 2m) all
factors of 2 can be cancelled out of the denominator r. Thus we consider c values (r of
them) such that

|c− k2m

r
| < 1

2
k = 0, 1, . . . , (r − 1). (4)

In the previous case of exact periodicity (where 2m/r was an integer) each of these c-
values appeared with probability 1/r and all other c-values had probability zero. Here
we will show that although the other c-values will generally have non-zero probabilities,
the special ones in eq. (4) still have probability at least γ/r for a constant γ.

- -

6 6

-� -� -� -� -� -�

(a) exact periodicity (b) inexact periodicity

c c

2m/r 2m/r 2m/r ≈ 2m/r ≈ 2m/r ≈ 2m/r

|g(c)| |g(c)|

.

4

Figure 1.2: Schematic depiction of amplitudes in QFT|per〉. (a) exact periodicity (r
divides 2m): we have nonzero amplitudes only at exact multiples c = k2m/r. (b) non-
exact periodicity: we have nonzero amplitudes for many c-values but the integers nearest
to the multiples k2m/r still have suitably large amplitudes.

Theorem 3 Suppose we measure the label in QFT|per〉. Let ck be the unique integer
with |c− k 2m

r
| < 1

2
. Then prob(ck) > γ/r where γ ≈ 4/π2.

Proof: (optional) For any c we have

prob(c) = |g(c)|2 =
1

A2m

∣∣∣∣1− αA1− α

∣∣∣∣2
with α = e2πicr/2

m
= e2πi(cr mod 2m)/2m . For our special c-values satisfying eq. (4) we

have |cr − k2m| < r/2 so

−r
2
< cr mod 2m <

r

2
. (5)

Write α = eiθc with θc = 2π(cr mod 2m)/2m so |θc| < πr/2m. Also from eq. (3) we see
that in all cases A < 2m/r + 1 so

|Aθc| <
πr

2m
A < π(1 +

r

2m
).

Write Aθmax = π(1 + r/2m). Note that for all c

0 ≤ |Aθc/2| < Aθmax/2 < π. (6)

To estimate prob(c) we’ll use the algebraic identity∣∣∣∣1− eiAθ1− eiθ

∣∣∣∣2 =

(
sinAθ/2

sin θ/2

)2

.

We have

Prob(c) = 1
A2m

(
sinAθc/2
sin θc/2

)2
> 1

A2m

(
sinAθc/2
θc/2

)2
(as sin x < x)

= A
2m

(
sinAθc/2
Aθc/2

)2
> A

2m

(
sinAθmax/2
Aθmax/2

)2
where the last inequality follows from eq. (6) and the fact that sinx

x
is decreasing on

0 < x < π.

Next from eq. (3) we have A > 2m/r− 1 so A
2m

> 1
r
− 1

2m
. Introducing g(x) =

(
sinx
x

)2
we

have

prob(c) > (
1

r
− 1

2m
)g(Aθmax/2) =

1

r
(1− r

2m
)g(Aθmax/2) >

γ

r
(7)

for a constant γ, noting that 2m > N2 and r < N so r/2m << 1 for all large N . To
get a proper lower bound for γ is straightforward but a little messy. Here we will just

5

consider the case of very large N and ignore terms of order r/2m < 1/N . We have
Aθmax/2 = π

2
(1+r/2m) ≈ π/2 so g(π/2) = (2/π)2 and from eq. (7) we get prob(c) > γ/r

for γ ≈ 4/π2. �

According to this theorem, for each k = 0, . . . , r − 1 we will obtain the unique c-value
satisfying eq. (4) with probability at least γ/r. We will be especially interested in
those c’s for which the corresponding k is coprime to r and there are O(r/ log log r) of
these. Hence the total probability of obtaining such a “good” c-value is O(1/ log log r) >
O(1/ log logN) and with O(log logN) repetitions we will obtain such a good c-value with
any desired constant level of probability. To complete the determination of r and hence
the description of the quantum factoring algorithm, it remains to show that r can be
determined from a (“good”) c-value in time poly(logN).

1.3 Getting r from a good c value

Suppose we have c satisfying eq. (4) i.e.∣∣∣∣ c2m − k

r

∣∣∣∣ < 1

2m+1
. (8)

Recall that r < N and 2m > N2 so∣∣∣∣ c2m − k

r

∣∣∣∣ < 1

2N2
with r < N (9)

and c/2m is a known fraction. We claim that there is at most one fraction k′/r′ with a
denominator r′ less than N satisfying eq. (9). Hence for given c/2m, eq. (9) determines
k/r uniquely. To prove this claim suppose k′/r′ and k′′/r′′ both lie within 1/(2N2) of
c/2m. Then ∣∣∣∣k′r′ − k′′

r′′

∣∣∣∣ =
|k′r′′ − r′k′′|

r′r′′
≥ 1

r′r′′
>

1

N2
(10)

But k′/r′ and k′′/r′′ are both within 1/(2N2) of c/2m so they must be within 1/N2 of
each other, contradicting eq. (10). Hence there is at most one k/r with r < N satisfying
eq. (9).

This result is the reason why we chose 2m to be greater than N2: it guarantees that the
bound on RHS of eq. (9) is < 1/(2N2) and then k/r is uniquely determined from c/2m.

Example 2 Suppose we wish to factor N = 39 and we have chosen a = 7 which is
coprime to N . Let r be the period of f(x) = 7x mod 39. We have N2 = 1521 and
210 < N2 < 211 = 2048 = 2m so m = 11. Suppose the measurement of QFT2m |per〉
yields c = 853. According to our theory, this number has a “reasonable” probability to
be within half of a multiple k211/r of 2m/r. If this is actually the case then our theory
guarantees that the fraction k/r is uniquely determined, as the unique fraction k/r with
denominator < 39 that is within 1/2m+1 = 1/212 of 853/2048. In this example we can

6

(with a calculator) check all fractions a/b with a < b < N = 39 to see which ones (if
any) satisfy ∣∣∣∣ab − 853

2048

∣∣∣∣ < 1

212
. (11)

There are O(N2) such fractions to try. We find that there is only one viz. a/b = 5/12
that satisfies eq. (11): ∣∣∣∣ab − 853

2048

∣∣∣∣ = 0.000163 <
1

212
= 0.000244

This result is consistent with k = 5 and r = 12 and also with k = 10 and r = 24. But
our theory also guarantees that k is coprime to r with “reasonable” probability which in
this case sets r = 12. We can then verify that 712 is indeed congruent to 1 mod 39 and
7x for all x < 12 is not congruent to 1 so r = 12 is the correct period.

So far we have that k/r is uniquely determined by c/2m but how do we actually compute
k/r from c/2m? In the above example we were able to try out all candidate fractions
k′/r′ with denominator less than N . But there are generally O(N2) such fractions to try
so this method of seeking the unique one is not efficient, requiring at least O(N2) steps,
which is exponential in n = logN !

To obtain an efficient (i.e. poly(n) time) method we invoke the elegant mathematical:

Theory of continued fractions

Any rational number s/t (with s < t) may be expressed as a so-called continued fraction
(CF):

s

t
=

1

a1 + 1
a2+

1

···+ 1
al

(12)

where a1, . . . , al are positive integers. To do this we begin by writing s/t = 1/(t/s). Since
s < t we have t/s = a1 + s1/t1 with a1 ≥ 1 and s1 < t1 = s and so

s

t
=

1

a1 + s1
t1

.

Then repeating with s1/t1 we get t1/s1 = a2 + s2/t2, t2 = s1 and

s

t
=

1

a1 + 1
a2+

s2
t2

.

Continuing in this way we get a sequence of integers ak, sk and tk. Note that sk < tk and
tk+1 is always given by sk. Hence the sequence tk of denominators is strictly a decreasing
sequence of non-negative integers and hence the process must always terminate, after
some number l, of iterations giving the expression in eq. (12).

To avoid the cumbersome “fractions of fractions” notation in eq. (12) we will write

1

a1 + 1
a2+

1

···+ 1
al

= [a1, a2, . . . , al]. (13)

7

For each k = 1, . . . , l we can truncate the fraction in (13) at the kth level to get a sequence
of rational numbers

p1
q1

= [a1] =
1

a1
,

p2
q2

= [a1, a2] =
1

a1 + 1
a2

=
a2

a1a2 + 1
, · · ·

pk
qk

= [a1, . . . , ak], . . .
pl
ql

= [a1, . . . , al] =
s

t
.

pk/qk is called the kth convergent of the continued fraction of s/t.

Continued fractions enjoy the following tantalising properties.

Lemma 2 Let a1, . . . , al be any positive numbers (not necessarily integers here). Set
p0 = 0, q0 = 1, p1 = 1 and q1 = a1.
(a) Then [a1, . . . , ak] = pk/qk where

pk = akpk−1 + pk−2 qk = akqk−1 + qk−2 k ≥ 2. (14)

Note that if the ak’s are integers then so are the pk’s and qk’s.
(b) qkpk−1 − pkqk−1 = (−1)k for k ≥ 1.
(c) If a1, . . . , al are integers then gcd(pk, qk) = 1 for k ≥ 1.

Proof outline (optional):
(a) By induction on k. For the base case k = 2 direct calculation gives [a1, a2] =
a2/(a1a2+1) and eq. (14) correctly gives p2 = a2 and q2 = a1a2+1. Thus suppose eq. (14)
holds for length k. For length k+ 1 we have [a1, . . . ak, ak+1] = [a1, . . . , ak−1, ak + 1/ak+1]
where the RHS now has length k. Let p̃j/q̃j be the sequence of convergents of RHS. Then
p̃k/q̃k = [a1, . . . ak, ak+1] = [a1, . . . , ak−1, ak+1/ak+1] and clearly p̃k−1 = pk−1, p̃k−2 = pk−2
and similarly for the q’s. Hence using the recurrence relation eq. (14) at length k (twice)
we get:

p̃k
q̃k

=
(ak + 1/ak+1)pk−1 + pk−2
ak + 1/ak+1)qk−1 + qk−2

=
pk + pk−1/ak+1

qk + qk−1/ak+1

=
ak+1pk + pk−1
ak+1qk + qk−1

i.e. eq. (14) holds for k + 1.

(b) is proved by induction on k using the recurrence relations of (a) to express the (k, k−1)
expression in terms of the same expression with lower values of the subscripts.

(c) follows from (b): if a divides pk and qk exactly then by (b), a must divide ±1 i.e.
a = 1. �

Theorem 4 Consider the continued fraction s/t = [a1, . . . , al]. Let pk/qk = [a1, . . . , ak]
be the kth convergent for k = 1, . . . , l. If s and t (cancelled to lowest terms) are m bit
integers then the length l of the continued fraction is O(m) and this continued fraction
together with its convergents can be calculated in time O(m3).

8

Proof outline (optional):
We have ak ≥ 1 and pk, qk ≥ 1 so by the above recurrence relations, pk and qk must
be increasing sequences and pk = akpk−1 + pk−2 ≥ 2pk−2. Similarly qk ≥ 2qk−2. Hence
pk and qk are each ≥ 2bk/2c so since pk and qk are coprime and increasing, we must get
s/t after at most l = O(m) iterations. The computation of each successive ak involves
the division of O(m) bit integers (and splitting off the integer parts). These arithmetic
operations can be performed in O(m2) time so we can compute all O(m) ak’s in O(m3)
time. Similarly using the recurrence relation we can compute all pk’s and qk’s in O(m3)
time too. �

Theorem 5 Let 0 < x < 1 be a rational number and suppose that p/q is a rational
number such that ∣∣∣∣x− p

q

∣∣∣∣ < 1

2q2
.

Then p/q is a convergent of the continued fraction of x.

Proof (optional):
Let p/q = [a1, . . . , an] be the CF expansion of p/q with convergents pj/qj, so pn/qn = p/q.
Introduce δ defined by

x =
pn
qn

+
δ

2q2n
(15)

so |δ| < 1. We aim to show that the CF of x is an extension of the CF of p/q i.e. we
want to construct λ rational so that x = [a1, . . . , an, λ]. In view of lemma 2(a) define λ
by x = (λpn + pn−1)/(λqn + qn−1). Using eq. (15) to replace x we get

λ = 2

(
qnpn−1 − pnqn−1

δ

)
− qn−1

qn
.

By lemma 2(b), qnpn−1 − pnqn−1 = (−1)n. We may assume that this is the same as the
sign of δ since if it is the opposite sign then from the start write p/q = [a1, . . . , an − 1, 1]
so the value of n is increased by 1 and the sign is flipped. Thus without loss of generality
we can assume that (qnpn−1 − pnqn−1)/δ is positive and so

λ =
2

δ
− qn−1

qn
> 2− 1 > 1

(as |δ| < 1 and qn−1 < qn). Next let λ = b0 +λ′ where b0 is te integer part and 0 < λ′ < 1
and write λ′ = [b1, . . . , bm]. So x = [a1, . . . , an, λ] = [a1, . . . , an, b0, b1, . . . , bm] i.e. p/q is
a convergent of the CF of x as required. (In the last argument we also used the easily
proven fact that the CF expansion of any number is unique, except for the above trick
of splitting 1 off from the last term i.e. if [a1, . . . , an] = [b1, . . . , bm] and an, bm 6= 1 then
m = n and ai = bi). �

Remark: Theorem 5 actually remains true for irrational x too. For an irrational
number the continued fraction development does not terminate – we get an infinitely
long continued fraction and corresponding infinite sequence of rational convergents pk/qk
k = 1, 2, This sequence provides an efficient method of computing excellent rational

9

approximations to an irrational recalling that qk grows exponentially with k and (by
theorem 5) it determines the accuracy of the approximation. �

Now let us return to our problem of getting r from the knowledge of c and 2m satisfying
eq. (9): ∣∣∣∣ c2m − k

r

∣∣∣∣ < 1

2N2
and r < N .

We know that there is (at most) a unique such fraction k/r and according to theorem 5
this fraction must be a convergent of the continued fraction of c/2m. Since 2m = O(N2)
we have that c and 2m are O(n) bit integers and the computation of all the convergents
can be performed in time O(n3). So we do this computation and finally check through
the list of O(n) convergents to find the unique one satisfying eq. (9), and read off r as
its denominator.

Example 3 (Continuation of example 2).
Suppose we have obtained c = 853 with 2m = 211 = 2048. We develop 853/2048 as a
continued fraction:

853

2048
= 1/(2048/853);

2048

853
= 2 +

342

853
;

853

243
= 2 +

169

342
;

342

169
= 2 +

4

169
;

169

4
= 42 +

1

4
;

4

1
= 4 + 0

so
853

2048
= [2, 2, 2, 42, 4].

The convergents are

[2] =
1

2
; [2, 2] =

2

5
; [2, 2, 2] =

5

12
; [2, 2, 2, 42] =

212

509
; [2, 2, 2, 42, 4] =

852

2048
.

Checking these five fractions we find only 5/12 as being within 1/212 of 853/2048 and
having denominator < 39.

In appendix 1.4 we will reconsider all the ingredients of Shor’s quantum factoring algo-
rithm and assess its polynomial time complexity in more detail.

1.4 Assessing the complexity of Shor’s algorithm

This subsection is optional and not examinable.

Let us now consider all the parts of the quantum factoring algorithm and assess the time
complexity of the whole process. Recall that the best known classical algorithm to factor
N with n = logN digits runs in a time that’s exponential in n1/3.

Consider the case where N is neither even nor a prime power and a < N chosen at
random is coprime to N . In this case we must proceed to use the quantum part of the

10

overall algorithm summarised at the end of section 1.1 i.e. the quantum part (iv), in
addition to some further classical computational steps as well.

We first need to compute the function f(k) = ak mod N (in superposition) over a domain
0 ≤ k < 2m where 2m = O(N2) so m = O(n). To compute ak we use repeated squaring
of a blog kc times. Once the exponent is close to k we do a few more multiplications
to reach k itself. This requires O(log k) = O(m) = O(n) multiplications of integers
mod N . Each such multiplication can be performed in O(n2) time (by the standard
“long multiplication” algorithm) so the computation of f(k) for any 0 ≤ k < 2m can
be performed in O(n3) steps. To compute the uniform superposition of all inputs for
this computation we need m = O(n) initial Hadamard operations. Thus the state |f〉 =

1√
2m

∑
|k〉 |f(k)〉 can be computed in O(n3) steps.

Remark
There exist algorithms for integer multiplication that are faster than O(n2) time, running
in time O(n log n log log n) so the above O(n3) can be improved to O(n2 log n log log n).
�

Next we perform measurements on the output register of O(n) qubits i.e. O(n) single
qubit measurements. Then we apply QFT mod 2m to obtain the state QFT|per〉. In
Lecture Note 10, it was given that QFT mod 2m may be implemented in O(m2) = O(n2)
steps.

Next we measure the state QFT|per〉 (O(n) single qubit measurements again) to obtain
the value that we called c in section 1.3. Thus to get such a value the number of steps
is O(n2 log n log log n) + O(n) + O(n2) + O(n) = O(n2 log n log log n). To get the period
r we need c to be a “good” c value i.e. c/2m is close to a multiple k/r of 1/r where k is
coprime to r. To achieve this with a constant level of probability, O(log logN) = O(log n)
repetitions of the above process suffice i.e. O(n2(log n)2 log log n) steps in all.

Remark
Actually it may be shown that a constant number of repetitions suffices here (instead
of O(log n)) to determine r. Suppose that in two repetitions we obtain k1/r and k2/r
with neither k1 nor k2 coprime to r. Then we will determine r1 and r2 which are the
denominators of k1/r and k2/r cancelled to lowest terms i.e. r1 and r2 will be randomly
chosen factors of r. Then, according to a further theorem of number theory, if we compute
the least common multiple r̃ of r1 and r2 we will have r̃ = r with probability at least
1/4. �

To get r from c we use the (classical) continued fractions algorithm which required O(n3)
steps. Finally to obtain our factor of N we (classically) compute t = gcd(ar/2+1, N) using
Euclid’s algorithm which requires O(n3) steps for n digit integers. If r was odd or r is
even but t = 1 then we go back to the start. But we saw that the good case “r is even
and t 6= 1” will occur with any fixed constant level of probability 1 − ε after a constant
number O(log 1/ε) of such repetitions.

Hence the time complexity of the entire algorithm is O(n3) (or actually slightly better
with optimized algorithms and a more careful complicated analysis). It is amusing to
note that the “bottlenecks” of the algorithms performance i.e. the sections requiring the

11

highest degree polynomial running times, are actually the classical processing sections
and not the novel quantum parts!

12

