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1 Postulates of Quantum Mechanics:

Our description of quantum mechanics below may at first sight look a little different from
standard textbook presentations but in fact it’s equivalent. Here we focus on quantum
mechanics of physical systems with finite dimensional state spaces (multi-qubit systems,
cf below) and unitary matrices representing finite time evolutions, whereas quantum
physics textbooks traditionally begin with the infinite dimensional case viz. wavefunc-
tions, and Schrödinger’s wave equation giving infinitesimal time evolution via a Hamil-
tonian. We will also emphasize the quantum measurement formalism, which will be of
crucial significance for us.

(QM1) Postulate 1: Quantum states To any isolated physical (quantum-
mechanical) system S there is associated a Hilbert space, i.e. a complex, inner product
space V, called the state space of the system. The physical state of the system S is
completely described by its state vector, which is a unit vector1 in the system’s state
space.�

Remark 1: Global and Relative Phase of state vectors

Consider two states |Ψ〉 and |Φ〉, where |Ψ〉 is given by (1) and |Φ〉 = eiθ|Ψ〉, θ being a
real constant. These two states differ by the factor eiθ, of unit modulus, which is referred
to as a global phase factor. These states describe the same physical state of a system.
This is because there are no measurements which can be used to distinguish between
such states. Consequently, the state of a physical system is given by a ray in a Hilbert
space, the latter being an equivalence class of unit vectors that differ by a global phase
factor. If |φ〉 ∈ V , then the ray is {eiθ |φ〉 : θ ∈ R}. Note, however, that the relative
phase factor between two states is of physical significance, i.e., the states a|Ψ〉+ b|Φ〉 and
a|Ψ〉+ beiθ|Φ〉 do not represent the same physical state of the system.

By slight abuse of terminology we will often say that “a system has state space V (of
some dimension d)” when its states are the unit vectors in the vector space V .

Superposition Principle
If |ψ〉, |φ〉 ∈ V , then any state which is a superposition of these states, i.e., any state of
the form

|Ψ〉 = a|ψ〉+ b|φ〉, (1)

(where the amplitudes a, b ∈ C), also belongs to V . This is referred to as the Superposition
Principle.

1More precisely, a ray; see Remark 1.
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The simplest non-trivial quantum system has a 2-dimensional vector space, V = C2.
Choosing a pair of orthonormal vectors and labelling them |0〉 and |1〉, the general state
can be written |ψ〉 = a |0〉+ b |1〉 . We say that |ψ〉 is a superposition of states |0〉 and |1〉
with amplitudes a and b.

Qubits: any quantum system, with a 2-dimensional state space C2 and a chosen or-
thonormal basis (which we write, for example, as {|0〉 , |1〉}) is called a qubit. The basis
states |0〉 , |1〉 are called computational basis states or standard basis states. They will
be used to represent the two corresponding classical bit values as qubit states, and then
general qubit states can be thought of as superpositions of the classical bit values There
are many real physical systems that can embody the structure of a qubit, for example the
spin of an electron, the polarisation of a photon, superpositions of two selected energy
levels in an atom etc.

Example. For a single qubit, the orthonormal states |0〉 and |1〉 give a quantum repre-
sentation of the classical bit values 0 and 1. Another pair of orthonormal states that we
will frequently encounter in applications is the following pair, labelled by plus and minus
signs:

|+〉 =
1√
2

(|0〉+ |1〉) |−〉 =
1√
2

(|0〉 − |1〉) .

They are “equally weighted superpositions” in the sense that the squared amplitudes of
0 and 1 are equal in each state. The basis {|+〉 , |−〉} is called the conjugate basis (and
the states themselves are called the conjugate basis states).

(QM2) Postulate 2: Composite systems The state space of a composite
physical system is the tensor product of the state spaces of its component systems. Hence,
if system S1 had state space V and system S2 has state space W then the joint (or
composite)system obtained by taking S1 and S2 together, has states given by arbitrary
unit vectors in the tensor product space V ⊗W. In other words, the state space of the
composite system S1S2 is V ⊗W. �

Product states and entangled states of n qubits: A system comprising n qubits
thus has state space (C2)⊗n of dimension 2n. An n-qubit state |ψ〉 is a called a product
state if it is the product of n single-qubit states |ψ〉 = |v1〉 |v2〉 . . . |vn〉 and |ψ〉 is called
entangled if it is not a product state.

As mentioned previously, the computational basis or standard basis for n qubits is given
by the tensor products of |0〉’s and |1〉’s in each slot, giving the 2n orthonormal vectors
|i1〉 |i2〉 . . . |in〉 where each i1, . . . in is 0 or 1. Thus the basis vectors are labelled by n-bit
strings and we often write |i1〉 |i2〉 . . . |in〉 simply as |i1i2 . . . in〉.

We note the significant fact that as the number of qubits grows linearly, the full state
description (given as the full list of amplitudes) grows exponentially in its complexity.
However the description of any product state grows only linearly with n (each successive
|vi〉 is described by two further amplitudes) so this exponential complexity of state de-
scription is intimately related to the phenomenon of entanglement that arises for tensor
products of spaces. With this in mind, it is especially interesting to contrast (QM2) with
its classical counterpart – for classical physics, the state space of a composite system is
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the Cartesian product of the state spaces of its constituent parts. Thus if a classical
system S requires K parameters for its state description then a composite of n such
systems will require only nK parameters i.e. a linear growth of description, in contrast
to the exponential growth for quantum systems.

1.1 Linear operators/maps: Dirac notation

Observables

Another key concept of Quantum Mechanics is that of observables. An observable is a
property of the physical system which can be measured (at least in principle). Mathemat-
ically an observable is a linear, self-adjoint (or Hermitian) operator. A linear operator A
acting on a Hilbert space V is a map:

A : |ψ〉 → A|ψ〉 ; A(a|ψ〉+ b|φ〉) = aA|ψ〉+ bA|φ〉, for |ψ〉, |φ〉 ∈ V , a, b ∈ C.

For an operator A acting on a Hilbert space V there exists a unique linear operator A†

acting on V such that
〈v|Aw〉 = 〈A†v|w〉.

The operator A† is the adjoint of A. A linear operator A is represented by a matrix. Its
adjoint A† is represented by the transpose of the complex conjugate of this matrix. An
operator A is a self-adjoint (or Hermitian) operator if A = A†. From the definition of
the adjoint it is easy to see that (AB)† = B†A†. By convention, if |ψ〉 is a vector in the
Hilbert space on which the operator A acts, then we define

|ψ〉† = 〈ψ|.

Hence,
(A|ψ〉)† = 〈ψ|A†.

There are four observables acting in the single qubit space, which are of particular sig-
nificance in Quantum Information Theory. These are represented by the following 2× 2
matrices:

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Here σ0 is the 2× 2 identity matrix and σx, σy and σz are the Pauli matrices. The action
of these operators on the basis vectors |0〉 and |1〉 of the single qubit space are:

σ0|0〉 = |0〉 ; σ0|1〉 = |1〉
σx|0〉 = |1〉 ; σx|1〉 = |0〉
σy|0〉 = i|1〉 ; σy|1〉 = −i|0〉
σz|0〉 = |0〉 ; σz|1〉 = −|1〉 (2)
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The Pauli matrices satisfy the following relations:

σxσy = iσz ; σyσz = iσx ; σzσx = iσy ;

Heuristically, the action of the Pauli matrices on the state of a qubit can be interpreted
as follows

σx : a bit flip ; σz : a phase flip ; σy(= iσxσz) : a combined (bit and phase) flip.

Dirac notation for linear maps/operators:

To illustrate the Dirac notation for linear maps, we will consider the case of linear maps
on C2 and its tensor powers. With |v〉 = a |0〉+b |1〉 and |w〉 = c |0〉+d |1〉 in C2, standard
matrix multiplication for the outer product gives

M = |v〉 〈w| =
(
a
b

)
(c∗ d∗) =

(
ac∗ ad∗

bc∗ bd∗

)
(3)

which is a linear map on V ≡ C2 (acting by matrix multiplication on column vectors).
In fact for any |x〉 ∈ C2 we have M |x〉 = (|v〉 〈w|) |x〉 = |v〉 〈w|x〉, i.e. the vector |v〉
multiplied by scalar 〈w|x〉. Such outer products do not give all linear maps from C2 to C2

but only rank 1 mapping, and the kernel of the linear map M is the subspace of vectors
orthogonal to |w〉).

Note that

|0〉 〈0| =
(

1
0

)(
1 0

)
=

(
1 0
0 0

)
|0〉 〈1| =

(
0 1
0 0

)
etc.

so if A : C2 → C2 is any linear map with matrix representation

A =

(
a b
c d

)
then we can write

A = a |0〉〈0|+ b |0〉〈1|+ c |1〉〈0|+ d |1〉〈1| .

More formally, this just expresses the fact that {|0〉〈0| , |0〉〈1| , |1〉〈0| , |1〉〈1|} is a basis for
the vector space V ⊗ V∗ of linear maps on V ≡ C2.

Not also from eqn. (3) the calculational fact that an inner product can be expressed as
a trace (of the corresponding outer product):

〈w|v〉 = Tr |v〉 〈w| .

Projection operators
An important special case of eq. (3) is when |v〉 = |w〉 and |v〉 is normalised (i.e. 〈v|v〉 =
1). Then Πv = |v〉 〈v| is the operator of projection onto |v〉, satisfying ΠvΠv = Πv. The
latter property can be seen very neatly in Dirac notation: ΠvΠv = (|v〉 〈v|)(|v〉 〈v|) =
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|v〉 〈v|v〉 〈v| = |v〉 〈v| = Πv as 〈v|v〉 = 1. If |a〉 is any vector orthogonal to |v〉 then
Πv |a〉 = |v〉 〈v|a〉 = 0. It then easily follows that for any vector |x〉, Πv |x〉 is the vector
obtained by projection of |x〉 into the one dimensional subspace spanned by |v〉. Similarly
for any vector space W (of any dimension), if |w〉 is any normalised vector in W , then
Πw = |w〉 〈w| is the linear operation of projection into the one-dimensional subspace
spanned by |w〉.

More generally, if E is any linear subspace of a vector space V and {|e1〉 , . . . , |ed〉} is any
orthonormal basis of E (which thus has dimension d), then ΠE = |e1〉 〈e1|+ . . .+ |ed〉 〈ed|
is the operator of projection into E . This property is easily checked by extending the
given basis of E to a full orthonormal basis of the whole space V . Then by writing any
vector |ψ〉 in V in terms of this basis we readily see that ΠE |ψ〉 is indeed its projection
into E .

Finally a point about notation: if |x〉 = A |v〉 then the corresponding bra vector is given
by 〈x| = (A |v〉)† = |v〉†A† = 〈v|A†. This follows from the fact that taking adjoints of
matrix products reverses the product order (MN)† = N †M †. Thus for example in the
inner product construction we can write 〈a|M |b〉 as 〈a|x〉 or as 〈y|b〉 where |x〉 = M |b〉
but |y〉 = M † |a〉 (so 〈y| = 〈a|M ) i.e. the central M in 〈a|M |b〉 acts as M if viewed
as acting to the right, but acts as M † if viewed as acting to the left i.e. on the ket |a〉
before it is turned into a bra vector.

Tensor products of maps/operators
If

B =

(
p q
r s

)
is a second linear map on C2 then the tensor product of maps A⊗B : C2⊗C2 → C2⊗C2

is defined by its action on the basis |i〉 |j〉 → A |i〉B |j〉 for i, j ∈ {0, 1}. Extending this
linearly defines A ⊗ B on general vectors in C2 ⊗ C2. In particular for product vectors
we get (A⊗B)(|v〉 |w〉) = A |v〉 ⊗B |w〉.

The 4 × 4 matrix of components of A ⊗ B has a simple block form, as can be seen by
writing down its action on basis states in components (giving the columns of the matrix
of A⊗B). We get the following pattern (similar to our previous pattern for components
of tensor products of vectors):

A⊗B =

(
aB bB
cB dB

)
=


ap aq bp bq
ar as br bs
cp cq dp dq
cr cs dr ds

 .

Important special cases of tensor product maps are A ⊗ I and I ⊗ A, being the action
of A on the first (resp. second) component space of C2 ⊗ C2, leaving the other space
“unaffected”.

Example: for |Φ〉 = 1√
2
(|00〉+ |11〉) and A as above, we have

(A⊗ I) |Φ〉 = 1√
2

[A |0〉) |0〉+ (A |1〉] |1〉 = 1√
2
(a |0〉+ c |1〉) |0〉+ 1√

2
(b |0〉+ d |1〉) |1〉

= 1√
2
(a |00〉+ b |01〉+ c |10〉+ d |11〉).
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On the other hand (I ⊗ A) |Φ〉 = 1√
2
|0〉 (A |0〉) + 1

2
|1〉 (A |1〉) giving 1√

2
(a |00〉 + c |01〉 +

b |10〉+ d |11〉), which is different. �

1.2 Postulate (QM3): physical evolution of quantum systems

Any physical (finite time) evolution of an closed (isolated) quantum system is represented
by a unitary operation on the corresponding vector space of states. �

The evolution of an isolated (closed) quantum system is described by a unitary transfor-
mation. If a system is in a state |ψ(t1)〉 at time t1 and a state |ψ(t2)〉 at a later time t2,
then

|ψ(t2)〉 = U(t1, t2)|ψ(t1)〉,

where U(t1, t2) is a unitary operator which depends only on t1 and t2. More precisely,
the time evolution of a state vector is governed by the Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉,

where H is a self-adjoint operator, called the Hamiltonian, which generates the unitary
transformation (~ is a constant called the Planck’s constant). In particular, for a time-
independent Hamiltonian, we have

U(t1, t2) = e−
i
~H(t2−t1).

Note that the unitary evolution of a closed system is deterministic. Given an initial state
|ψ(0)〉, the theory predicts the state |ψ(t)〉 at all later times t.

Unitary Operators:

Recall that a linear operator U on any vector space is unitary if its matrix has U−1 = U †

(where dagger is conjugate transpose). We have the following equivalent characterisations
(useful for recognising unitary operations). U is unitary:
if and only if U maps an orthonormal basis to an orthonormal set of vectors;
if and only if the columns (or rows) of the matrix of U form an orthonormal set of vectors.

After the fourth postulate (QM4)) we will introduce a number of particular unitary
operators on one and two qubits that will be frequently used.

Dirac notation: partial inner products for vectors in V ⊗W
For expressing our final quantum postulate (QM4) it will be useful to introduce a ‘partial
inner product’ operation on tensor product spaces. Any ket |v〉 ∈ V defines a linear map
V ⊗W → W which we call “partial inner product with |v〉”. It is defined on the basis
{|ei〉 |fj〉} of V ⊗W by the formula |ei〉 |fj〉 → 〈v|ei〉 |fj〉 ∈ W , and on general vectors in
V ⊗W by linear extension of its basis action. Similarly for any |w〉 ∈ W we get a partial
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inner product mapping V ⊗W to V . If V andW are instances of the same space (e.g. we
will often have them both being C⊗2) then it is important to specify (e.g. with a subscript
label on the kets) which of the two spaces is supporting the bra-ket construction of the
inner product.

Example. For |v〉 ∈ V and |ξ〉 ∈ V ⊗ V we can form the partial inner product on the
first or second space. To make the position explicit we will introduce subscripts to label
the slots, writing V ⊗V as V1⊗V2, and writing 1〈v|ξ〉12 ∈ V2 for partial inner product on
the first slot, and 2〈v|ξ〉12 ∈ V2 for partial inner product on the second slot.
Thus for example, if V = C2 and |ξ〉 = a |00〉+ b |01〉+ c |10〉+ d |11〉 then the orthonor-
mality relations 〈i|j〉 = δij give 1〈0|ξ〉12 = a |0〉 + b |1〉 and 2〈0|ξ〉12 = a |0〉 + c |1〉 i.e. we
just pick out the terms of |ξ〉 that contain 0 in the first, respectively second, slot. �

The partial inner product operation is in fact just the familiar operation of contraction of
tensor indices (with a complex conjugation). In index notation (with components always
relative to an orthonormal product basis), if |ξ〉 ∈ V ⊗ V and |v〉 ∈ V , have components
ξij and vk respectively then the partial inner products of |v〉 with |ξ〉 on the two slots are
respectively v∗i ξij and v∗j ξij (with the summation convention applied i.e. repeated indices
are summed).
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