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1 Postulate (QM4): Quantum measurements

An isolated (closed) quantum system has a unitary evolution. However, when an exper-
iment is done to find out the properties of the system, there is an interaction between
the system and the experimentalists and their equipment (i.e., the external physical
world). So the system is no longer closed and its evolution is not necessarily unitary.
The following postulate provides a means of describing the effects of a measurement on
a quantum-mechanical system.

In classical physics the state of any given physical system can always in principle be
fully determined by suitable measurements on a single copy of the system, while leaving
the original state intact. In quantum theory the corresponding situation is bizarrely
different – quantum measurements generally have only probabilistic outcomes, they are
“invasive”, generally unavoidably corrupting the input state, and they reveal only a
rather small amount of information about the (now irrevocably corrupted) input state
identity. Furthermore the (probabilistic) change of state in a quantum measurement is
(unlike normal time evolution) not a unitary process. Here we outline the associated
mathematical formalism, which is at least, easy to apply.

(QM4) Quantum measurements and the Born rule In Quantum Me-
chanics one measures an observable, i.e. a self-adjoint operator. Let A be an observable
acting on the state space V of a quantum system Since A is self-adjoint, its eigenvalues
are real. Let its spectral projection be given by A =

∑
n anPn, where {an} denote the

set of eigenvalues of A and Pn denotes the orthogonal projection onto the subspace of
V spanned by eigenvectors of A corresponding to the eigenvalue Pn. Note that if the
eigenvalue an is non-degenerate, the projection Pn is of rank 1 Pn = |ϕn〉 〈ϕn|, where
|ϕn〉 satisfies the eigenvalue equation: A |ϕn〉 = an |ϕn〉. The outcome of a measurement
of a A (i.e. the measured value) is an eigenvalue an (say) of A. If the system is in a state
|ψ〉 just before the measurement, then the probability that the outcome is an is given by

p(an) = 〈ψ|Pn|ψ〉, (1)

Moreover, as a result of this measurement, the state of the system becomes

Pn|ψ〉
〈ψ|Pn|ψ〉1/2

. (2)

This is hence the post-measurement state when the measurement outcome is an. Equa-
tions (1) and (2) constitute the so-called Born Rule.

This prescription tells us that if the measurement is repeated immediately, the measured
value is again an, this time with probability one.
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The above defined measurement is called a von Neumann measurememnt or projective
measurement (the latter nomenclature arising from the fact that the Born Rule is given
entirely in terms of projection operators). A more general definition of measurement
(generalized measurements or POVMs) is used in the case of open quantum systems.

Note that measurement in Quantum Mechanics is probabilistic, i.e., Quantum Mechan-
ics assigns probabilities to different possible outcomes of a measurement. Moreover,
measurement disturbs the state of a system, taking it to an eigenstate of the measured
observable. In particular, if A and B are two observables which do not commute, then
a measurement of A will necessarily influence the outcome of a subsequent measurement
of B. The fact that acquiring information about a quantum system inevitably disturbs
the state of the system leads to important differences between Classical– and Quantum
Information Theory.

1.1 Quantum measurement of a state relative to a basis

It is also useful (particularly for this course) to introduce the notion of the quantum
measurement of a state |ψ〉 relative to a given orthonormal basis of V.

Suppose we are given a (single copy of a) quantum state |ψ〉 of a quantum system with
state space V of dimension n. Let B = {|e1〉 , . . . , |en〉} be any orthonormal basis of V
and write |ψ〉 =

∑n
i=1 ai |ei〉. Then we can make a quantum measurement of |ψ〉 relative

to the basis B. This is sometimes called a (complete) von Neumann measurement or
projective measurement. The possible outcomes are j = 1, . . . , n corresponding to the
basis states |ej〉. The probability of obtaining outcome j is

p(j) = 〈ψ|Pj |ψ〉 with Pj = |ej〉 braej
= |〈ej|ψ〉|2 = |aj|2. (3)

Hence, the probability of the outcome j is given by the square of the modulus of the
amplitude aj. If outcome j is seen then after the measurement the state is no longer |ψ〉
but has been “collapsed” to |ψafter〉 = |ej〉 i.e. the basis state corresponding to the seen
outcome. Since |ψafter〉 = |ej〉 corresponding to the seen outcome j, if we were to apply
the measurement again we will simply see the same j with certainty, and not be able to
sample the probability distribution pi = |ai|2 again.

The qualifier “complete” in “complete projective measurement” refers to the fact that
the projections here are into one-dimensional orthogonal subspaces (defined by the or-
thonormal basis). The notion of incomplete projective measurement generalises this to
arbitrary decompositions of the state space into orthogonal subspaces (of arbitrary di-
mension, summing to the dimension of the full space).

Incomplete projective measurements
Let {E1, . . . , Ed} be any decomposition of the state space V into d mutually orthogonal
subspaces i.e. V is the direct sum E1 ⊕ . . . ⊕ Ed. Let Πi be the operation of projection
into Ei. Thus ΠiΠi = Πi (property of any projection operator) and by orthogonality
we have ΠiΠj = 0 for all i 6= j. Then the incomplete measurement of any state |ψ〉
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relative to the orthogonal decomposition {E1, . . . , Ed} is the following quantum operation:
the measurement outcomes are i = 1, . . . d and the probability of outcome i is:

p(i) = 〈ψ|Πi |ψ〉

and the post-measurement state |ψi〉 for outcome i is the (“collapsed”) projected vector
renormalised to unit length:

|ψi〉 = Πi |ψ〉 /
√
p(i).

A complete projective measurement is thus clearly a special case in which all the sub-
spaces have dimension one. Any incomplete measurement (with orthogonal decompo-
sition {E1, . . . , Ed}) can be refined to a complete one by choosing an orthonormal basis
of the state space that is consistent with the Ei’s i.e. each Ei is spanned by a subset
of the basis vectors. Then, by performing this complete measurement (instead of the
incomplete one) we can recover the outcome probabilities of the incomplete measure-
ment outcomes by summing all the probabilities corresponding to basis vectors in each
subspace Ei. However the post-measurement states will be different for the incomplete
measurement and its refinement.

Remark: Note that the measurement of a quantum observable A, with spectral projec-
tion A =

∑
j ajPj is the incomplete measurement relative to the orthogonal decomposi-

tion of the state space V of the system into eigenspaces of A, with the outcome being an
eigenvalue aj of A (rather than just j). If the eigenvalues are all non-degenerate, then
the measurement is a complete projective measurement.

Example of an incomplete measurement. (Parity measurement). The parity of a
2-bit string b1b2 is the mod 2 sum b1 ⊕ b2. The parity measurement on two qubits is the
incomplete measurement on the four dimensional state space with two outcomes (labelled
0 and 1), which on the computational basis states corresponds to the parity of the state
label. Thus the corresponding orthogonal decomposition is E0 = span {|00〉 , |11〉} and
E1 = span {|01〉 , |10〉}. Upon measurement, the state |ψ〉 = a |00〉+ b |01〉+ c |10〉+d |11〉
will give outcome 0 with probability p0 = |a|2 + |d|2 and the post-measurement state
would then be |ψ1〉 = (a |00〉+ d |11〉)/√p0. �

Remark: For the purpose of obtaining information about the identity of the state of a
quantum system, the actual choice of naming of the distinct outcomes is of no real con-
sequence. We can just consider the probability Prob(jthoutcome), where the jth outcome
could either be the label of a basis vector or the jth eigenvalue of an observable. So, in
this course we sometimes base our notion of a quantum measurement on the underlying
orthogonal decomposition of the state space V of the system (being measured) rather
than referring to particular observables. However, it is good to keep in mind that the
physical observable is also of importance since the physical implementation of a measure-
ment involves a physical interaction between the system and a “measuring apparatus”
and if for example, the basis states |0〉 and |1〉 of a qubit being measured physically are
spin-Z eigenstates or photon polarisations or two chosen energy energy levels in a Calcium
atom (with corresponding quantum observables being spin, polarisation or energy respec-
tively), this knowledge will have a crucial effect on how the measurement interaction for
a standard basis measurement is actually implemented.
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The Extended Born rule
We will often consider measurement of only some part of a composite system, which
is in fact just a particular kind of incomplete measurement. The associated formal-
ism for probabilities and post-measurement states is called the Extended Born Rule and
we give an explicit description here (as it will be often used). Suppose |ψ〉 is a quan-
tum state of a composite system S1S2 with state space V ⊗ W , where V and W have
dimensions m and n, respectively. Let B = {|e1〉 , . . . , |em〉} be an orthonormal ba-
sis of V and F = {|f1〉 , . . . , |fn〉} be an orthonormal basis of W . Then, as we know,
{|ei〉 ⊗ |fj〉}i=1,...,m;j=1,...,n is an orthonormal basis of V ⊗ W and hence |ψ〉 can be ex-
panded uniquely as

|ψ〉 =
m∑
i=1

n∑
j=1

aij |ei〉 |fj〉 ,

with aij ∈ C and
∑m

i=1

∑n
j=1 |aij|2 = 1, since |ψ〉 is a state of a quantum system and is

hence normalized.

Now we can make a measurement of |ψ〉 ∈ V ⊗ W relative to the basis B of V . This
amounts to an incomplete measurement in V ⊗ W relative to its decomposition into
mutually orthogonal subspaces Ei given by Ei = span{|ei〉 ⊗ |φ〉 for all |φ〉 ∈ W}. The
Extended Born Rule asserts the following:
(a) the probability of an outcome k ∈ {1, . . . ,m} is given by

p(k) = 〈ψ| (Pk ⊗ I) |ψ〉 , where Pk = |ek〉 〈ek|
=

∑
i,j,i′,j′

a∗ij 〈ei| 〈fj| (|ek〉 〈ek| ⊗ I)ai′j′ |ei′〉 |fj′〉

=
∑
j

|akj|2 (4)

(b) if the outcome k is seen then the post-measurement state is

|ψafter〉 =
(Pk ⊗ I)√

p(k)
|ψ〉 =

∑
j akj |ek〉 |fj〉√∑

j′ |akj′ |2

Note: the basic Born rule is just a special case of (a) and (b) with W having dimension
n = 1.

Remark: Fixed choice of basis:
Note that a measurement relative to any general basis C can be performed by a mea-
surement relative to any a priori fixed basis B together with some unitary operations;
indeed for any two orthonormal bases B = {|e1〉 , . . . , |em〉} and C = {|e′1〉 , . . . , |e′m〉} of
an m-dimensional state space V , there is a unitary transformation U with |e′i〉 = U |ei〉
for all i. Thus to perform a measurement on |ψ〉 ∈ V relative to C we first apply U−1

to |ψ〉, then perform a measurement relative to B, then finally apply U to the resulting
post-measurement state, to obtain the same probabilities and post-measurement states
as would have been obtained from a C measurement.

Standard measurement on multi-qubit systems
Recall that any n-qubit system comes equipped with a standard or computational basis
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B of orthonormal states labelled by n-bit strings. In this course our measurements will
often be restricted to being only relative to this standard basis for some subset of k qubits
of an n-qubit system. We refer to such a measurement as a standard measurement.

Example: Consider the 3-qubit state |φ〉 ∈ (C2)⊗3 given by

|φ〉 =
i

2
|000〉+

1 + i

2
√

2
|001〉 − 1

2
|101〉+

3

10
|110〉 − 2i

5
|111〉 .

A standard measurement of any of the three qubits state yields the outcome 0 or 1. The
probability of the outcome 1 on making a standard measurement of the first qubit is, by
the Extended Born Rule, given by

p(1) = 〈φ| (P1 ⊗ I ⊗ I) |φ〉 , whereP1 = |1〉 〈1|

=
1

4
+

9

100
+

4

25

=
1

2
. (5)

Compute the post-measurement state. �

Remark
According to (QM4), states with guaranteed different measurement outcomes always lie
in orthogonal subspaces of the state space. Consequently two states are reliably physically
distinguishable iff the corresponding kets are orthogonal. Here distinguishability means
that there is a measurement which respectively outputs two distinct results, say 0 or 1,
with certainty when applied respectively to the two states. We will explore consequences
of this important non-classical feature much more later! – but we emphasise here that
in contrast, in classical physics any two different states of a system are in principle
distinguishable. �

Remark: global and relative phases revisited.
If |v〉 is any unit vector then the states |v〉 and eiθ |v〉 will have the same outcome probabil-
ities (for a measurement relative to any basis or orthogonal decomposition), independent
of θ (since probabilities always depend on squared moduli of amplitudes.) Also under
unitary (hence linear) evolution the phase eiθ just persists unchanged as a coefficient
(i.e. a scalar multiplier). Here θ is called a global phase. Thus |v〉 and eiθ |v〉 represent
identical physical situations and that is why in (QM1) we said that states of a physical
system correspond to rays, i.e. to unit vectors up to an (irrelevant) global phase. Note
also that the projection operator Πv = |v〉 〈v| is independent of the choice of global phase
for |v〉 and hence it can also be used to uniquely represent distinct physical systems (not
having the global phase ambiguity).
On the other hand θ in 1√

2

(
|0〉+ eiθ |1〉

)
is called a relative phase and it is a crucially

important parameter for the qubit state. Indeed for example, we can think of any uni-
tary operation as evolving |0〉 and |1〉 separately and combining the results with rela-
tive phase θ which will affect the way that the two terms interfere (cf below). In the
above, 1√

2
is a normalization factor. A notable illustrative example is the pair of states

|+〉 = 1√
2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). These differ only by a relative phase of π

but they are easily seen to be orthogonal, so can be distinguished with certainty by a
suitable measurement. �
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