
Part IIC Lent term 2019-2020

QUANTUM INFORMATION & COMPUTATION

Nilanjana Datta, DAMTP Cambridge

1 Circuit model of quantum computation

The circuit model of classical computation above has a straightforward generalisation to
the quantum setting. For inputs of size n the starting string b1 . . . bn00 . . . 0 is replaced by
a sequence of qubits in the corresponding computational basis state |b1〉 . . . |bn〉 |0〉 |0〉 . . . |0〉.
A computational step is the application of a quantum gate which is a prescribed unitary
operation applied to a prescribed choice of qubits. We do not need any randomised in-
put qubits here as for example, a random choice of |0〉 and |1〉 can be generated by a
measurement on H |0〉.

For each input size n we have a quantum circuit Cn which is a prescribed sequence of such
steps. The output of the computation is the result of performing a quantum measurement
(in the computational basis) on a specified subset of the qubits (this being part of the
description of Cn).
Remark: More generally we could allow measurements along the way (rather than only
at the end) and allow the choice of subsequent gates to depend on the measurement
outcomes. However it can be shown that this further generality adds nothing extra:
any such circuit can be re-expressed as an equivalent circuit in which measurements are
performed at the end only. �

A quantum computation or quantum algorithm is defined by a (uniform) family of quan-
tum circuits (C1, C2, . . .).

Classical or quantum circuits can be depicted pictorially as a circuit diagram. Each input
bit or qubit is represented by a horizontal line running across the diagram, which is read
from left to right. The applied gates are represented by labelled boxes (or other symbols
attached to the relevant lines), read in order from left to right.

Universal sets of quantum gates
In classical computation we restrict our circuits to be composed of gates chosen from
a (small) universal set that act on only a few bits each. One such choice is the set
{NOT, AND, OR}. Actually OR may even be deleted from this set since b1 OR b2 =
NOT(NOT(b1) AND NOT(b2)).
Remark (optional): It may be shown that no sets of 2-bit reversible gates are universal
(see Preskill p241-2) but there are 3-bit reversible gates G that are universal even just
by themselves i.e. any reversible Boolean function may be constructed as a circuit of G’s
alone, so long as we have available constant extra inputs set to 0 or 1. Two examples of
such gates (assuming our starting bit string can also have bits set to 1 in the extra working
space) are the Fredkin gate F (0b2b2) = 0b2b3 and F (1b2b3) = 1b3b2 i.e. a controlled
SWAP, controlled by the value of the first bit, and the Toffoli gate Toff(0b2b3) = 0b2b3

1

and Toff(1b2b3) = 1CX(b2b3) i.e. a controlled-controlled-X gate in which X is applied
to bit 3 iff the first two bits are 1 and Toff is the identity otherwise. �

Approximately universal sets of quantum gates
In the quantum case all gates are reversible (unitary) by definition and there are similar
universality results but the situation is a little more complicated: quantum gates are
parameterised by continuous parameters (in contrast to classical gates which form a dis-
crete set) so no finite set can generate them all exactly via (even unboundedly large) finite
circuits. But many small finite sets of quantum gates are still approximately universal in
the sense that they can generate any unitary gate with any prescribed accuracy ε > 0.
Such approximations (for suitably small ε) will suffice for all our purposes and for clarity
of discussion we will generally ignore this issue of approximability and just allow use of
any exact gate that we need.

More precisely, introduce a notion of closeness of unitary operators U and V (on the
same space) by defining ||U − V || ≤ ε to mean that max ||U |ψ〉 − V |ψ〉 || ≤ ε. Here
the maximum is taken over all normalised vectors |ψ〉 and ||..|| in the maximum is the
usual length of vectors. Then a set of quantum gates (acting on qubits) is defined to
be approximately universal if for any unitary W on any number n of qubits and any
ε > 0 there is a circuit C of the given gates whose overall unitary action (also denoted
C) satisfies ||W − C|| ≤ ε. The set is called exactly universal if we have ε = 0 in the
preceding condition.

For either exactly or approximately universal sets of gates, the size of the circuit C for
W will generally be exponential in the number of qubits n on which W acts (but in
some important special cases of W , it can be poly-sized e.g. notably for the quantum
Fourier transform on n qubits, cf later! Another important issue is how the size of C
grows with decreasing accuracy parameter ε. Here we just quote a fundamental result:
the Solovay-Kitaev theorem asserts that if G is an approximately universal set of gates,
then (under some further mild technical conditions on G) the size of C can be taken
to be bounded by poly(log(1/ε)) as a function of accuracy parameter i.e. polynomial
in the number of digits (log(1/ε) of accuracy (For a proof see e.g. appendix in Nielsen
and Chuang). The degree of the polynomial p here depends (generally exponentially) on
the number of qubits n of W , but for fixed n, p does not depend on the gate W being
approximated.

Remark (optional)
Some examples of approximately universal sets of quantum gates are the following:

{CX, all 1-qubit gates}, {CX,H, T =

(
1 0
0 exp iπ/4

)
} and {Toffoli 3-qubit gate, H}

the latter actually being universal for all gates with real entries, which can be shown to
suffice for full universal quantum computation i.e. for any quantum circuit there is a cor-
responding circuit comprising only real gates, that generates the same output probability
distribution for any computational basis input. The infinite set {CX, all 1-qubit gates}
is actually exactly universal too (with continuous parameters provided by the 1-qubit
gates). For more details and proofs see Nielsen and Chuang §4.5. �

Polynomial time quantum computations and BQP

2

The complexity class BQP (bounded error quantum polynomial time) is defined as a
direct generalisation of BPP viz. BQP is the class of languages L such that there is
a polynomial time quantum algorithm for deciding membership of L i.e. for each input
size n we have a quantum circuit Cn whose size is bounded by poly(n) and for any input
string the output answer is correct with probability at least 2/3.

BQP is our mathematical formalisation of “computations that are feasible on a quantum
computer”. From the definitions it can be shown that BPP ⊆ BQP (any poly sized
classical circuit can be replaced by an equivalent circuit of classical reversible gates,
still of poly size and the latter is also a quantum circuit albeit comprising gates that
preserve the computational basis as a set). Thus with these computational definitions
the question “Is quantum computing more powerful than classical computing?” can
be expressed formally as “Is BQP strictly larger than BPP?”. This question remains
unsolved although it is generally believed that the classes are unequal. For example the
decision problem FACTOR(M,N) (viz. does M have a nontrivial factor less than N?)
is in BQP (as we’ll see in detail later) but it is not known to be in BPP (although we
have no proof that it is not in BPP!)

More generally we will be especially interested in any kind of computational task that
can demonstrate any kind of computational resource benefit (especially an exponential
benefit) for solution by quantum vs. classical computation. Historically the notion
of query complexity and promise problems that we introduced above, provided the first
source of such examples, and we’ll consider some of them as our first quantum algorithms
below. But before giving explicit algorithms we need a further result about black boxes
(oracles) in the context of quantum vs. classical computations.

Reversible version of any Boolean function
If f : Bm → Bn is any Boolean function it can be expressed in an equivalent reversible
form f̃ : Bm+n → Bm+n as follows. We introduce an addition operation, denoted ⊕, for
n-bit strings: if b = b1 . . . bn and c = c1 . . . cn then b⊕ c = (b1 ⊕ c1) . . . (bn ⊕ cn) i.e. b⊕ c
is the n-bit string obtained by adding mod 2, the corresponding bits of b and c in each
slot separately. For example 011 ⊕ 110 = 101. Note that for any n-bit string we have
b⊕ b = 0 . . . 0 where 0 . . . 0 denotes the n-bits string of all zeroes.

Now for any f : Bm → Bn define f̃ : Bm+n → Bm+n by

f̃(b, c) = (b, c⊕ f(b)) for any m-bit string b and any n-bit string c.

Note that f̃ is easily computable if we can compute f and the (simple) addition operation
⊕ on bit strings. Conversely given f̃ we can easily recover f(b) for any b by setting
c = 0 . . . 0 and looking at the last n bits of output of f̃ .

Furthermore we have the key property: for any f , f̃ is a reversible (i.e. invertibele
function on m+n bits. In fact f̃ is always self-inverse i.e. f̃ applied twice is the identity
operation (an easy consequence of the fact that b⊕ b = 00 . . . 0 for any bit string b).

It should be intuitively clear that any classical algorithm using an oracle for f can be
equally well performed using an oracle for the reversible version f̃ instead. In quantum
computation, gates are always reversible (unitary) by definition so we will always use

3

(a quantum version of) f̃ for any oracle problem involving f . More specifically the
quantum oracle for any Boolean function f : Bm → Bn will be the quantum gate
denoted Uf on m+ n qubits, defined by its action on basis states as follows:

Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for all x ∈ Bm and y ∈ Bn

i.e. Uf acts exactly like the classical function f̃ on the labels (x, y) ∈ Bm+n of the
computational basis states (and it acts on arbitrary states of m + n qubits by linear
extension). We sometimes refer to the m-qubit register |x〉 and the n-qubit register |y〉
as the input and output registers respectively.
Remark. Uf as defined above is always guaranteed to be a unitary operation. Indeed if
g : Bk → Bk is any reversible Boolean function on k bits then it is just a permutation of
all k-bit strings. Hence the linear map V on k qubits defined by V |i1 . . . ik〉 = |g(i1 . . . ik)〉
will be represented by a permutation matrix in the computational basis i.e. each column
is all 0’s with a single 1 entry, and different columns have the 1 entry in different rows,
so V is unitary. �

Computation by quantum parallelism
Note that as a quantum operation (in contrast to classical oracles) Uf can act on (jointly)
superposed inputs of both registers. Indeed if we set the input register to an equal
superposition of all 2m possible m-bit strings we get (by linearity)

Uf :
1√
2m

∑
all x

|x〉 |0〉 → |ψf〉 ≡
1√
2m

∑
all x

|x〉 |f(x)〉

i.e. in one run of Uf we obtain a final state which depends on all of the function
values. Such a computation on superposed inputs is called computation by quantum
parallelism. By further quantum processing and measurement on the state |ψf〉 we are
able to obtain “global” information about the nature of the function f (e.g. determine
some joint properties of all the values) with just one run of Uf , and these properties
may be difficult to get classically without many classical evaluations of f (as each such
evaluation reveals only one further value). This simple idea of running computations
in quantum superposition is a powerful ingredient in quantum vs. classical algorithms.
In Appendix 1 (at the end of the notes) we discuss some further issues relating to the
interpretation of superpositions in quantum computation.

It is instructive to consider more explicitly how we can actually create the input state
of a uniform superposition over all x values that is needed in the above process. Recall
that H |0〉 = 1√

2
(|0〉+ |1〉) so if we apply H to each of n qubits initially in state |0〉 and

multiply out all the state tensor products, we get

H ⊗ . . .⊗H(|0〉 . . . |0〉) = 1√
2n

(|0〉+ |1〉) . . . (|0〉+ |1〉)
= 1√

2m

∑1
x1,x2,...,xm=0 |x1〉 |x2〉 . . . |xm〉 = 1√

2m

∑
x∈Bn

|x〉 .

An important feature of this process (recalling the fundamental significance of poly vs.
exponential growth in complexity theory) is that we have created a superposition of
exponentially many (viz. 2m) terms with only a linear number of elementary operations
viz. application of H just m times.

4

