QUANTUM INFORMATION & COMPUTATION

Lecture notes¹

Nilanjana Datta, DAMTP Cambridge

n.datta@cam.ac.uk

CONTENTS

- 1. Introduction: why quantum computation and information?
- 2. Principles of quantum mechanics and the Dirac bra-ket notation
 - (a) Quantum states and operations
 - (b) Quantum measurements
- 3. Quantum states as information carriers
 - (a) The no-cloning theorem
 - (b) Distinguishing non-orthogonal states
 - (c) The no-signalling principle
 - (d) Superdense coding
- 4. Quantum gates and Quantum teleportation
- 5. Quantum cryptography BB84 quantum key distribution
- 6. Basics of classical computation and complexity
 - (a) Query complexity and promise problems
- 7. Circuit model of quantum computation
- 8. The Deutsch-Jozsa algorithm

Simon's algorithm

- 9. Quantum Fourier transform and periodicities
 - (a) QFT mod N
 - (b) Periodicity determination
 - (c) Efficient implementation of QFT
- 10. Quantum algorithms for search problems
 - (a) The class NP and search problems

¹Based on the lecture notes of Richard Jozsa (DAMTP, Cambridge) from Lent 2018-2019.

(b) Grovers quantum searching algorithm

11. Shor's quantum factoring algorithm

- (a) Factoring as a periodicity problem
- (b) Computing the period r of $f(k) = a^k \mod N$
- (c) Getting r from a good c value
- (d) Assessing the complexity of Shor's algorithm

Some useful references:

- M. Nielsen and I. Chuang "Quantum computation and information". CUP.
- M. M. Wilde "From Classical to Quantum Shannon Theory", CUP.
- B. Schumacher and M. Westmoreland, "Quantum processes, systems and information". CUP 2010.
- S. Leopp and W. Wootters, "Protecting information: from classical error correction to quantum cryptography". Academic press 2006.

John Preskill's notes for Caltech course on quantum computation. Available at http://www.theory.caltech.edu/people/preskill/ph229/notes/book.ps