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Lecture 23

Superadditivity and superactivation of quantum capacity

In this lecture we will discuss one of the properties of quantum capacity which makes it
notoriously hard to compute. We will see that there are channels which individually have zero
quantum capacity, but when used jointly can have positive capacity. This suggests that
quantum capacity depends on the context: on the availability of other resources.
One way to conclude that a channel has zero capacity is to show that bipartite states shared
with the help of a channel between the sender and the receiver cannot be converted to a
maximallly entangled state.

0.1 Local Operations and Classical Communication (LOCC)

LOCC operations represent the range of transformations which occur in a two (or more)
spatially-separated laboratories where one is allowed to exchange classical messaages (without
quantum communication). We will consider the case of two laboratories, with Alice
representing the first laboratory and Bob the second. LOCC transformations consist of the
following sequence of actions:

1. Alice performs a quantum operation (represented by a quantum channel) which may
have both classical and quantum outputs. She then communicates her classical
information to Bob

2. Bob performs a quantum operation which is conditioned on the classical information he
has received from Alice. This can be mathematically described as

∑
x Λ

(x)
A ⊗N

(x)
B , where

{Λ(x)}x is a collection of CP maps such that
∑

x Λ(x) is a quantum channel, and each

N
(x)
B represents a quantum channel (for each x), and x denotes classical message.

3. Bob and Alice swap places and Bob performs actions in point 1) and Alice in point 2).

We will denote LOCC→ if we only allow unidirectional classical communication from the
sender to the receiver). Similarly, we define LOCC← if we only allow backwards classical
comunication and LOCC↔ if we allow unrestricted bidirectional communication.
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0.2 Superactivation

Definition 1 The state ρAB ∈ D(HA ⊗HB) is called distillable if ∃n such that ρ⊗nAB can be
locally projected onto an entangled state: ∃PA, QB - 2-dimensional projectors on systems A

and B respectively
[
(PA ⊗QB)ρ⊗nAB(PA ⊗QB)

]TA
has at least one negative eigenvalue.

We say that the state ρAB is LOCC-distillable if there is a sequence of LOCC operations Λ:
Λ(ρ⊗nAB) = (Φ+

AB)⊗m,m ≥ 1.

Lemma 1 ρAB is distillable iff ∃n: ρ⊗nAB → (LOCC)(Φ+
AB)⊗m,m ≥ 1.

Alternative statement: ρAB is distillable iff there exists a bipartite pure state |Ψ〉 of Schmidt
rank 2 such that 〈Ψ|(ρ⊗nAB)ΓA|Ψ〉 < 0.

Proof of the above lemma is non-examinable. The above lemma states that a state with a
positive partial transpose (PPT) is non-distillable. Therefore, if we construct a channel which
on any input produces a PPT state, then we can conclude that such channel has zero
quantum capacity. We will present such a channel by constructing its Choi state.

Consider the state

ρABA′B′ =
1

2
|Φ+〉〈Φ+|AB ⊗ τ1,A′B′ +

1

2
|Φ−〉〈Φ−|AB ⊗ τ2,A′B′ , (1)

where τ1,A′B′ = [(ρs + ρa)/2]⊗k, τ1,A′B′ = [ρs]
⊗k, with ρs = 2/(d2 + d)Psym,

ρa = 2/(d2 − d)Pasym, where the latter are projectors on symmetric and antisymmetric
subspaces respectively. From example sheets we know that
Psym = 1/2(1 + F), Pasym = 1/2(1− F), with F being the permutation operator. This state
has a special significance because it may be used to ‘hide’ entanglement (under LOCC
operations).

Exercise [Optional and non-examinable]
Show that:

1. τ1,A′B′ , τ2,A′B′ are separable.

2. TrA′τi,A′B′ = TrB′τi,A′B′

3. ||τ1 − τ2|| ≥ 0, hence they are ‘globally distinguishable’.

The state ρABA′B′ has a negative partial transpose. This can be directly verified by inspecting

ρ
T
BB

′

ABA′B′ . To make ρABA′B′ have PPT, we will add a ‘noise’ term:

ρ(p,d,k) = 2pρABA′B′ + (1− 2p)
1

2
(|01〉〈01|+ |10〉〈10|)⊗ τ2,A′B′ , (2)

where p ∈ (0, 1
2
).

The following lemma provides a range for which ρ(p,d,k) is PPT:

2



Lemma 2 For p ∈ (0, 1
3
), 1−p

p
≥
(

d
d−1

)k
, the state ρ(p,d,k) has PPT.

Proof of this statement is located on page 32 of Appendix XV-B in arXiv:quant-ph/0506189.
Proof is non-examinable.
Consider a quantum channel Λ(p,d,k) whose Choi state is ρ(p,d,k) with parameters satisfying
conditions of Lemma 2. Thus its quantum capacity is Q(Λ(p,d,k)) = 0.

Another channel which we briefly considered is the Quantum Erasure channel:

Λp(ρ) = (1− p)ρ+ p|e〉〈e|, (3)

where 〈e|ρ|e〉 = 0 for all input states ρ. To see why Λ 1
2
(ρ) has zero quantum capacity, suppose

there is a scheme consisting of an encoder and decoder which allows Alice to communicate
quantum information to Bob reliably at a positive rate. Looking at the isometric extension of
Λ 1

2
we see that Bob and the environment are treated identically:

idR ⊗ Λ 1
2
(|ψ〉〈ψ|RA|) = TrE(

√
1/2|ψ〉〈ψ|RB| ⊗ |e〉〈e|E +

√
1/2|ψ〉〈ψ|RE| ⊗ |e〉〈e|B). (4)

Then the environment could resort to using the same decoder that is used by Bob, which
would lead to violation of no-cloning theorem. Thus Q(Λ 1

2
) = 0.

Counterintuitively, when they are used jointly we get Q(Λ(p,d,k) ⊗ Λ 1
2
) > 0!

Below is the sequence of actions which would lead to superactivation phenomenon:

1. Alice starts with Φ+
AB ⊗ Φ+

A′B′ and feeds BB
′

into Λ(p,d,k) : D(HBB′ )→ D(HBB′ ).

2. Alice and Bob now share ρ(p,d,k),ABA′B′ , where states in A
′

and B
′

are separable.

3. Alice sends A
′

through the Λ 1
2
. Half of the time (when erasure doesn’t take place) Bob

is able to distinguish between τ1 and τ2 and thus with non-zero probability q (which
only depends on the admixed noise) learn which of the maximally entangled states (Φ±)
they share. Thus, Q(Λ(p,d,k) ⊗ Λ 1

2
) ≥ q/2 ∗ Ic(A〉B) > 0!

The magnitude of this effect can be made large O(log(dim(HA))).
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